-
1
-
-
0020848962
-
Stabilization with relaxed controls
-
Z. Artstein, Stabilization with relaxed controls, Nonlinear Anal., 7(1983), 1163-1173.
-
(1983)
Nonlinear Anal.
, vol.7
, pp. 1163-1173
-
-
Artstein, Z.1
-
2
-
-
17644427854
-
Semiconcave functions, Hamilton-Jacobi equations, and optimal control
-
Birkhäuser Boston Inc., Boston, MA
-
P. Cannarsa and C. Sinestrari, "Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control", Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser Boston Inc., Boston, MA, 2004.
-
(2004)
Progress in Nonlinear Differential Equations and Their Applications
, vol.58
-
-
Cannarsa, P.1
Sinestrari, C.2
-
3
-
-
34249057145
-
An ISS small gain theorem for general networks
-
DOI 10.1007/s00498-007-0014-8
-
S. Dashkovskiy, B. S. Rüffer and F. R. Wirth, An ISS small gain theorem for general networks, Math. Control Signals Systems, 19(2007), 93-122. (Pubitemid 46784529)
-
(2007)
Mathematics of Control, Signals, and Systems
, vol.19
, Issue.2
, pp. 93-122
-
-
Dashkovskiy, S.1
Rufer, B.S.2
Wirth, F.R.3
-
5
-
-
23844461603
-
Attractors under discretization with variable stepsize
-
B. M. Garay and K. Lee, Attractors under discretization with variable stepsize, Discrete Contin. Dyn. Syst., 13(2005), 827-841.
-
(2005)
Discrete Contin. Dyn. Syst.
, vol.13
, pp. 827-841
-
-
Garay, B.M.1
Lee, K.2
-
6
-
-
0041428215
-
Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum
-
C. W. Gear and I. G. Kevrekidis, Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum, SIAM J. Sci. Comput., 24(2003), 1091-1106.
-
(2003)
SIAM J. Sci. Comput.
, vol.24
, pp. 1091-1106
-
-
Gear, C.W.1
Kevrekidis, I.G.2
-
7
-
-
0037408148
-
Telescopic projective methods for parabolic differential equations
-
DOI 10.1016/S0021-9991(03)00082-2
-
C. W. Gear and I. G. Kevrekidis, Telescopic projective methods for parabolic differential equations, J. Comput. Phys., 187(2003), 95-109. (Pubitemid 36515573)
-
(2003)
Journal of Computational Physics
, vol.187
, Issue.1
, pp. 95-109
-
-
Gear, C.W.1
Kevrekidis, I.G.2
-
9
-
-
0031515636
-
Algorithms for unconstrained optimization problems via control theory
-
B. S. Goh, Algorithms for unconstrained optimization problems via control theory, J. Optim. Theory Appl., 92(1997), 581-604.
-
(1997)
J. Optim. Theory Appl.
, vol.92
, pp. 581-604
-
-
Goh, B.S.1
-
10
-
-
29144462459
-
Geometric integration methods that preserve Lyapunov functions
-
DOI 10.1007/s10543-005-0034-z
-
V. Grimm and G. R. W. Quispel, Geometric integration methods that preserve Lyapunov functions, BIT, 45(2005), 709-723. (Pubitemid 41817776)
-
(2005)
BIT Numerical Mathematics
, vol.45
, Issue.4
, pp. 709-723
-
-
Grimm, V.1
Quispel, G.R.W.2
-
12
-
-
11044232776
-
Attraction rates, robustness, and discretization of attractors
-
DOI 10.1137/S003614290139411X
-
L. Grüne, Attraction rates, robustness, and discretization of attractors, SIAM J. Numer. Anal., 41(2003), 2096-2113. (Pubitemid 40044144)
-
(2003)
SIAM Journal on Numerical Analysis
, vol.41
, Issue.6
, pp. 2096-2113
-
-
Grune, L.1
-
13
-
-
0001018397
-
Asymptotic stability equals exponential stability, and ISS equals finite energy gain - If you twist your eyes
-
PII S0167691199000535
-
L. Grüne, E. D. Sontag and F. R. Wirth, Asymptotic stability equals exponential stability, and ISS equals finite energy gain-if you twist your eyes, Syst. Control Lett., 38(1999), 127-134. (Pubitemid 129609693)
-
(1999)
Systems and Control Letters
, vol.38
, Issue.2
, pp. 127-134
-
-
Grune, L.1
Sontag, E.D.2
Wirth, F.R.3
-
14
-
-
0026283488
-
Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods
-
DOI 10.1145/210232.210242
-
K. Gustafsson, Control-theoretic techniques for stepsize selection in explicit Runge-Kutta methods, ACM Trans. Math. Software, 17(1991), 533-554. (Pubitemid 23599685)
-
(1991)
ACM Transactions on Mathematical Software
, vol.17
, Issue.4
, pp. 533-554
-
-
Gustafsson Kjell1
-
15
-
-
0028737039
-
Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods
-
K. Gustafsson, Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods, ACM Trans. Math. Software, 20(1994), 496-517.
-
(1994)
ACM Trans. Math. Software
, vol.20
, pp. 496-517
-
-
Gustafsson, K.1
-
16
-
-
0000687568
-
A PI stepsize control for the numerical solution of ordinary differential equations
-
K. Gustafsson, M. Lundh and G. Söderlind, A PI stepsize control for the numerical solution of ordinary differential equations, BIT, 28(1988), 270-287.
-
(1988)
BIT
, vol.28
, pp. 270-287
-
-
Gustafsson, K.1
Lundh, M.2
Söderlind, G.3
-
17
-
-
0003835647
-
-
Springer, Berlin, second edition
-
E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations", Springer, Berlin, second edition, 2006.
-
(2006)
Geometric Numerical Integration. Structure-preserving Algorithms for Ordinary Differential Equations
-
-
Hairer, E.1
Lubich, C.2
Wanner, G.3
-
18
-
-
0003589989
-
-
Springer, Berlin, second edition
-
E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations. I Nonstiff Problems", Springer, Berlin, second edition, 1993.
-
(1993)
Solving Ordinary Differential Equations. I Nonstiff Problems
-
-
Hairer, E.1
Nørsett, S.P.2
Wanner, G.3
-
20
-
-
33846166511
-
Small-gain theorem for ISS systems and applications
-
Z.-P. Jiang, A. R. Teel and L. Praly, Small-gain theorem for ISS systems and applications, Math. Control Signals Systems, 7(1994), 95-120.
-
(1994)
Math. Control Signals Systems
, vol.7
, pp. 95-120
-
-
Jiang, Z.-P.1
Teel, A.R.2
Praly, L.3
-
21
-
-
33644801119
-
Non-uniform robust global asymptotic stability for discrete-time systems and applications to numerical analysis
-
DOI 10.1093/imamci/dni037
-
I. Karafyllis, Non-uniform robust global asymptotic stability for discrete-time systems and applications to numerical analysis, IMA J. Math. Control Inform., 23(2006), 11-41. (Pubitemid 43349375)
-
(2006)
IMA Journal of Mathematical Control and Information
, vol.23
, Issue.1
, pp. 11-41
-
-
Karafyllis, I.1
-
22
-
-
33845885797
-
A system-theoretic framework for a wide class of systems. I, Applications to numerical analysis
-
I. Karafyllis, A system-theoretic framework for a wide class of systems. I, Applications to numerical analysis, J. Math. Anal. Appl., 328(2007), 876-899.
-
(2007)
J. Math. Anal. Appl.
, vol.328
, pp. 876-899
-
-
Karafyllis, I.1
-
23
-
-
46749118333
-
A small-gain theorem for a wide class of feedback systems with control applications
-
I. Karafyllis and Z.-P. Jiang, A small-gain theorem for a wide class of feedback systems with control applications, SIAM J. Control Optim., 46(2007), 1483-1517.
-
(2007)
SIAM J. Control Optim.
, vol.46
, pp. 1483-1517
-
-
Karafyllis, I.1
Jiang, Z.-P.2
-
24
-
-
77950831847
-
A vector small-gain theorem for general nonlinear control systems
-
Shanghai, China, arXiv:0904.0755
-
I. Karafyllis and Z.-P. Jiang, A vector small-gain theorem for general nonlinear control systems, In "Proceedings of the 48th IEEE Conference on Decision and Control", pages 7996-8001, Shanghai, China, 2009. arXiv:0904.0755.
-
(2009)
Proceedings of the 48th IEEE Conference on Decision and Control
, pp. 7996-8001
-
-
Karafyllis, I.1
Jiang, Z.-P.2
-
25
-
-
0004178386
-
-
Prentice Hall, Upper Saddle River, third edition
-
H. K. Khalil, "Nonlinear Systems", Prentice Hall, Upper Saddle River, third edition, 2002.
-
(2002)
Nonlinear Systems
-
-
Khalil, H.K.1
-
26
-
-
0000649975
-
Stable attracting sets in dynamical systems and in their one-step discretizations
-
P. E. Kloeden and J. Lorenz, Stable attracting sets in dynamical systems and in their one-step discretizations, SIAM J. Numer. Anal., 23(1986), 986-995.
-
(1986)
SIAM J. Numer. Anal.
, vol.23
, pp. 986-995
-
-
Kloeden, P.E.1
Lorenz, J.2
-
27
-
-
0007254737
-
Lyapunov functions and attractors under variable time-step discretization
-
P. E. Kloeden and B. Schmalfuss, Lyapunov functions and attractors under variable time-step discretization, Discrete Contin. Dynam. Systems, 2(1996), 163-172. (Pubitemid 126490498)
-
(1996)
Discrete and Continuous Dynamical Systems
, vol.2
, Issue.2
, pp. 163-172
-
-
Kloeden, P.E.1
Schmalfuss, B.2
-
29
-
-
0042185225
-
Dynamical systems and adaptive timestepping in ODE solvers
-
H. Lamba, Dynamical systems and adaptive timestepping in ODE solvers, BIT, 40(2000), 314-335.
-
(2000)
BIT
, vol.40
, pp. 314-335
-
-
Lamba, H.1
-
30
-
-
0029775547
-
A smooth converse lyapunov theorem for robust stability
-
Y. Lin, E. D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability, SIAM J. Control Optim., 34(1996), 124-160. (Pubitemid 126562693)
-
(1996)
SIAM Journal on Control and Optimization
, vol.34
, Issue.1
, pp. 124-160
-
-
Lin, Y.1
Sontag, E.D.2
Wang, Y.3
-
31
-
-
18144419386
-
A critical analysis on global convergence of Hopfield-type neural networks
-
DOI 10.1109/TCSI.2005.844366
-
J. Peng, Z.-B. Xu, H. Qiao and B. Zhang, A critical analysis on global convergence of Hopfieldtype neural networks, IEEE Trans. Circuits Syst. I Regul. Pap., 52(2005), 804-814. (Pubitemid 40608442)
-
(2005)
IEEE Transactions on Circuits and Systems I: Regular Papers
, vol.52
, Issue.4
, pp. 804-814
-
-
Peng, J.1
Xu, Z.-B.2
Qiao, H.3
Zhang, B.4
-
32
-
-
0024647058
-
Smooth stabilization implies coprime factorization
-
E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Automat. Control, 34(1989), 435-443.
-
(1989)
IEEE Trans. Automat. Control
, vol.34
, pp. 435-443
-
-
Sontag, E.D.1
-
33
-
-
0024717674
-
A "universal" construction of Artstein's theorem on nonlinear stabilization
-
E. D. Sontag, A "universal" construction of Artstein's theorem on nonlinear stabilization, Systems Control Lett., 13(1989), 117-123.
-
(1989)
Systems Control Lett.
, vol.13
, pp. 117-123
-
-
Sontag, E.D.1
-
37
-
-
3843138428
-
A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints
-
Y. Xia and J. Wang, A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints, IEEE Trans. Circuits Syst., 51(2004), 1385-1394.
-
(2004)
IEEE Trans. Circuits Syst.
, vol.51
, pp. 1385-1394
-
-
Xia, Y.1
Wang, J.2
-
38
-
-
0018991866
-
Differential equation approach to nonlinear programming
-
H. Yamashita, A differential equation approach to nonlinear programming, Math. Programming, 18(1980), 155-168. (Pubitemid 11421363)
-
(1980)
Mathematical Programming
, vol.18
, Issue.2
, pp. 155-168
-
-
Yamashita, H.1
-
39
-
-
33846615472
-
Convergence analysis of a differential equation approach for solving nonlinear programming problems
-
DOI 10.1016/j.amc.2006.05.190, PII S0096300306007582
-
L. Zhou, Y. Wu, L. Zhang and G. Zhang, Convergence analysis of a differential equation approach for solving nonlinear programming problems, Appl. Math. Comput., 184(2007), 789-797. (Pubitemid 46176135)
-
(2007)
Applied Mathematics and Computation
, vol.184
, Issue.2
, pp. 789-797
-
-
Zhou, L.1
Wu, Y.2
Zhang, L.3
Zhang, G.4
|