-
1
-
-
0004282301
-
-
Addison-Wesley, Redwood City, CA, 2nd ed
-
R. ABRAHAM & J. E. MARSDEN, Foundations of Mechanics, Addison-Wesley, Redwood City, CA, 1985 (2nd ed.).
-
(1985)
Foundations of Mechanics
-
-
ABRAHAM, R.1
MARSDEN, J.E.2
-
3
-
-
0020920397
-
Asymptotic Stability regions via Extensions of Zubov's Method - I
-
B. AULBACH, Asymptotic Stability regions via Extensions of Zubov's Method - I, Nonlinear Anal. 7 (1983) 12, 1431-1440.
-
(1983)
Nonlinear Anal
, vol.7
, Issue.12
, pp. 1431-1440
-
-
AULBACH, B.1
-
4
-
-
0020885892
-
Asymptotic Stability regions via Extensions of Zubov's Method - II
-
B. AULBACH, Asymptotic Stability regions via Extensions of Zubov's Method - II, Nonlinear Anal. 7 (1983) 12, 1441-1454.
-
(1983)
Nonlinear Anal
, vol.7
, Issue.12
, pp. 1441-1454
-
-
AULBACH, B.1
-
6
-
-
0000498845
-
On the existence of Liapunov functions in the case of asymptotic stability in the large
-
E. A. BARBAŠIN & N. N. KRASOVSKIǏ, On the existence of Liapunov functions in the case of asymptotic stability in the large, Prikl. Mat. Mekh. 18 (1954), 345-350.
-
(1954)
Prikl. Mat. Mekh
, vol.18
, pp. 345-350
-
-
BARBAŠIN, E.A.1
KRASOVSKIǏ, N.N.2
-
7
-
-
0037139682
-
Detection of attraction domains of non-linear systems using bifurcation analysis and Lyapunov functions
-
A. BARREIRO, J. ARACIL & D. PAGANO, Detection of attraction domains of non-linear systems using bifurcation analysis and Lyapunov functions, Internat. J. Control 75 (2002), 314-327.
-
(2002)
Internat. J. Control
, vol.75
, pp. 314-327
-
-
BARREIRO, A.1
ARACIL, J.2
PAGANO, D.3
-
8
-
-
0000255230
-
On asymptotic stability in dynamical systems
-
N. BHATIA, On asymptotic stability in dynamical systems, Math. Systems Theory 1 (1967), 113-128.
-
(1967)
Math. Systems Theory
, vol.1
, pp. 113-128
-
-
BHATIA, N.1
-
9
-
-
0003472556
-
-
Springer, Berlin
-
N. BHATIA & G. SZEGÖ, Stability Theory of Dynamical Systems, Grundlehren der mathematischen Wissenschaften 161, Springer, Berlin, 1970.
-
(1970)
Stability Theory of Dynamical Systems, Grundlehren der mathematischen Wissenschaften
, vol.161
-
-
BHATIA, N.1
SZEGÖ, G.2
-
10
-
-
85095815155
-
Radial basis functions
-
M. D. BUHMANN, Radial basis functions, Acta Numer. 9 (2000), 1-38.
-
(2000)
Acta Numer
, vol.9
, pp. 1-38
-
-
BUHMANN, M.D.1
-
12
-
-
0003208752
-
A regularization of Zubov's equation for robust domains of attraction
-
Nonlinear Control in the Year 2000, A. Isidori et al, eds, Springer, London
-
F. CAMILLI, L. GRÜNE & F. WIRTH, A regularization of Zubov's equation for robust domains of attraction, in: Nonlinear Control in the Year 2000, A. Isidori et al. (eds.), Lecture Notes in Control and Information Sciences 258, Springer, London, 2000, 277-290.
-
(2000)
Lecture Notes in Control and Information Sciences
, vol.258
, pp. 277-290
-
-
CAMILLI, F.1
GRÜNE, L.2
WIRTH, F.3
-
13
-
-
0036105218
-
A generalization of Zubov's method to perturbed systems
-
F. CAMILLI, L. GRÜNE & F. WIRTH, A generalization of Zubov's method to perturbed systems, SIAM J. Control Optim. 40 (2001) 2, 496-515.
-
(2001)
SIAM J. Control Optim
, vol.40
, Issue.2
, pp. 496-515
-
-
CAMILLI, F.1
GRÜNE, L.2
WIRTH, F.3
-
14
-
-
0023854584
-
Stability Regions of Nonlinear Autonomous Dynamical Systems
-
H.-D. CHIANG, M. W. HIRSCH & F. F. WU, Stability Regions of Nonlinear Autonomous Dynamical Systems, IEEE Trans. Automat. Control 33 (1988) 1, 16-27.
-
(1988)
IEEE Trans. Automat. Control
, vol.33
, Issue.1
, pp. 16-27
-
-
CHIANG, H.-D.1
HIRSCH, M.W.2
WU, F.F.3
-
16
-
-
34247161095
-
Step-response behaviour of a speed-control system with a back-e.m.f. nonlineanty
-
F. FALLSIDE & M. R. PATEL, Step-response behaviour of a speed-control system with a back-e.m.f. nonlineanty, Proc. IEE (London) 112 (1965) 10, 1979-1984.
-
(1965)
Proc. IEE (London)
, vol.112
, Issue.10
, pp. 1979-1984
-
-
FALLSIDE, F.1
PATEL, M.R.2
-
17
-
-
0037922106
-
Convergence order estimates of meshless collocation methods using radial basis functions
-
C. FRANKE & R. SCHABACK, Convergence order estimates of meshless collocation methods using radial basis functions, Adv. Comput. Math. 8 (1998), 381-399.
-
(1998)
Adv. Comput. Math
, vol.8
, pp. 381-399
-
-
FRANKE, C.1
SCHABACK, R.2
-
18
-
-
0002245065
-
Solving Partial Differential Equations by Collocation using Radial Basis Functions
-
C. FRANKE & R. SCHABACK, Solving Partial Differential Equations by Collocation using Radial Basis Functions, Appl. Math. Comput. 93 (1998) 1, 73-82.
-
(1998)
Appl. Math. Comput
, vol.93
, Issue.1
, pp. 73-82
-
-
FRANKE, C.1
SCHABACK, R.2
-
19
-
-
0022105529
-
On the Estimation of Asymptotic Stability Regions: State of the Art and New Proposals
-
R. GENESIO, M. TARTAGLIA & A. VICINO, On the Estimation of Asymptotic Stability Regions: State of the Art and New Proposals, IEEE Trans. Automat. Control 30 (1985), 747-755.
-
(1985)
IEEE Trans. Automat. Control
, vol.30
, pp. 747-755
-
-
GENESIO, R.1
TARTAGLIA, M.2
VICINO, A.3
-
20
-
-
0346008096
-
Necessary Conditions for a Limit Cycle and its Basin of Attraction
-
P. GIESL, Necessary Conditions for a Limit Cycle and its Basin of Attraction, Nonlinear Anal. 56 (2004) 5, 643-677.
-
(2004)
Nonlinear Anal
, vol.56
, Issue.5
, pp. 643-677
-
-
GIESL, P.1
-
21
-
-
85009382280
-
-
P. GIESL, Construction of global Lyapunov functions using radial basis functions, Habilitation Thesis, TU München, 2004.
-
P. GIESL, Construction of global Lyapunov functions using radial basis functions, Habilitation Thesis, TU München, 2004.
-
-
-
-
22
-
-
34247165984
-
Approximation of domains of attraction and Lyapunov functions using radial basis functions
-
Germany
-
P. GIESL, Approximation of domains of attraction and Lyapunov functions using radial basis functions, in: Proceedings of the NOLCOS 2004 Conference in Stuttgart, Germany, Vol. 2, 2004, 865-870.
-
(2004)
Proceedings of the NOLCOS 2004 Conference in Stuttgart
, vol.2
, pp. 865-870
-
-
GIESL, P.1
-
23
-
-
33847719995
-
Stepwise calculation of the basin of attraction in dynamical systems using radial basis functions
-
A. Iske & J. Levesley eds, Springer, Heidelberg
-
P. GIESL, Stepwise calculation of the basin of attraction in dynamical systems using radial basis functions, in: "Algorithms for Approximation", A. Iske & J. Levesley (eds.), Springer, Heidelberg, 2007, 113-122.
-
(2007)
Algorithms for Approximation
, pp. 113-122
-
-
GIESL, P.1
-
24
-
-
33847760210
-
-
P. GIESL, Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete Cont. Dyn. Sys. Ser. B 7 (2007) No. 1, 101-124.
-
P. GIESL, Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete Cont. Dyn. Sys. Ser. B 7 (2007) No. 1, 101-124.
-
-
-
-
25
-
-
85009431100
-
On the determination of the basin of attraction of discrete dynamical systems
-
to appear in
-
P. GIESL, On the determination of the basin of attraction of discrete dynamical systems, to appear in J. Difference Equ. Appl.
-
J. Difference Equ. Appl
-
-
GIESL, P.1
-
27
-
-
85009382279
-
-
P. GIESL & H. WENDLAND, Meshless Collocation: Error estimates with Application to Dynamical Systems (submitted to SIAM J. Numer. Anal.)
-
P. GIESL & H. WENDLAND, Meshless Collocation: Error estimates with Application to Dynamical Systems (submitted to SIAM J. Numer. Anal.)
-
-
-
-
30
-
-
0040453725
-
An adaptive grid scheme for the discrete Hamitton-Jacobi-Bellman equation
-
L. GRÜNE, An adaptive grid scheme for the discrete Hamitton-Jacobi-Bellman equation, Numer. Math. 75 (1997), 319-337.
-
(1997)
Numer. Math
, vol.75
, pp. 319-337
-
-
GRÜNE, L.1
-
31
-
-
0001018397
-
Asymptotic stability equals exponential stability, and ISS equals finite energy gain - if you twist your eyes
-
L. GRÜNE, E. D. SONTAG & F. WIRTH, Asymptotic stability equals exponential stability, and ISS equals finite energy gain - if you twist your eyes, Systems Control Lett. 38 (1999) 2, 127-134.
-
(1999)
Systems Control Lett
, vol.38
, Issue.2
, pp. 127-134
-
-
GRÜNE, L.1
SONTAG, E.D.2
WIRTH, F.3
-
32
-
-
1042267859
-
A constructive converse Lyapunov Theorem on Exponential Stability
-
S. HAFSTEIN, A constructive converse Lyapunov Theorem on Exponential Stability, Discrete Contin. Dyn. Syst. 10 (2004) 3, 657-678.
-
(2004)
Discrete Contin. Dyn. Syst
, vol.10
, Issue.3
, pp. 657-678
-
-
HAFSTEIN, S.1
-
33
-
-
0346419387
-
Eine Bemerkung zur zweiten Methode von Ljapunov
-
W. HAHN, Eine Bemerkung zur zweiten Methode von Ljapunov, Math. Nachr. 14 (1956), 349-354.
-
(1956)
Math. Nachr
, vol.14
, pp. 349-354
-
-
HAHN, W.1
-
38
-
-
85009390497
-
-
A. ISKE, Reconstruction of Functions from Generalized Hermite-Birkhoff Data, in: Approximation Theory VIII, 1: Approximation and Interpolation, Ch. Chui & L. Schumaker (eds.), 1995, 257-264.
-
A. ISKE, Reconstruction of Functions from Generalized Hermite-Birkhoff Data, in: Approximation Theory VIII, Vol. 1: Approximation and Interpolation, Ch. Chui & L. Schumaker (eds.), 1995, 257-264.
-
-
-
-
40
-
-
0141870196
-
Scattered Data Modelling Using Radial Basis Functions
-
A. Iske, E. Quak & M. Floater eds, Springer
-
A. ISKE, Scattered Data Modelling Using Radial Basis Functions, in: Tutorials on Multiresolution in Geometric Modelling, A. Iske, E. Quak & M. Floater (eds.), Springer, 2002, 205-242.
-
(2002)
Tutorials on Multiresolution in Geometric Modelling
, pp. 205-242
-
-
ISKE, A.1
-
41
-
-
0038535426
-
Planar regions of attraction
-
L. B. JOCIĆ, Planar regions of attraction, IEEE Trans. Automat. Control 27 (1982) 3, 708-710.
-
(1982)
IEEE Trans. Automat. Control
, vol.27
, Issue.3
, pp. 708-710
-
-
JOCIĆ, L.B.1
-
42
-
-
0032632143
-
A parametrization of piecewise linear Lyapunov functions via linear programming
-
P. JULIÁN, J. GUIVANT & A. DESAGES, A parametrization of piecewise linear Lyapunov functions via linear programming, Int. J. Control 72 (1999), 702-715.
-
(1999)
Int. J. Control
, vol.72
, pp. 702-715
-
-
JULIÁN, P.1
GUIVANT, J.2
DESAGES, A.3
-
43
-
-
0025229330
-
Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics, i: Surface approximations and partial derivative, estimates
-
E. J. KANSA, Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics, i: Surface approximations and partial derivative, estimates, Comput. Math. Appl. 19 (1990), 127-145.
-
(1990)
Comput. Math. Appl
, vol.19
, pp. 127-145
-
-
KANSA, E.J.1
-
44
-
-
0025210711
-
Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics, ii: Solutions to parabolic, hyperbolic and elliptic partial differential equations
-
E. J. KANSA, Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics, ii: Solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl. 19 (1990), 147-161.
-
(1990)
Comput. Math. Appl
, vol.19
, pp. 147-161
-
-
KANSA, E.J.1
-
45
-
-
0001570715
-
Construction of the Attraction Region by Zubov's method
-
N. E. KIRIN, R. A. NELEPIN & V. N. BAIDAEV, Construction of the Attraction Region by Zubov's method, Differ. Equ. 17 (1981), 871-880.
-
(1981)
Differ. Equ
, vol.17
, pp. 871-880
-
-
KIRIN, N.E.1
NELEPIN, R.A.2
BAIDAEV, V.N.3
-
46
-
-
34247147849
-
Stability of Motion, Stanford University Press, Stanford, 1963
-
Moscow
-
N. N. KRASOVSKIǏ, Stability of Motion, Stanford University Press, Stanford, 1963. Translation of the russian original, Moscow, 1959.
-
(1959)
Translation of the russian original
-
-
KRASOVSKIǏ, N.N.1
-
47
-
-
0029775547
-
A smooth converse Lyapunov theorem for robust stability
-
Y. LIN, E. D. SONTAG & Y. WANG, A smooth converse Lyapunov theorem for robust stability, SIAM J. Control Optim. 34 (1996), 124-160.
-
(1996)
SIAM J. Control Optim
, vol.34
, pp. 124-160
-
-
LIN, Y.1
SONTAG, E.D.2
WANG, Y.3
-
48
-
-
0001525304
-
Problème general de la stabilité du mouvement
-
A. M. LYAPUNOV, Problème general de la stabilité du mouvement, Ann. Fac. Sci. Toulouse 9 (1907), 203-474.
-
(1907)
Ann. Fac. Sci. Toulouse
, vol.9
, pp. 203-474
-
-
LYAPUNOV, A.M.1
-
49
-
-
85009362398
-
-
Translation of the russian version, published 1893 in Comm. Soc. math. Kharkow. Newly printed: Ann. of math. Stud. 17, Princeton, 1949.
-
Translation of the russian version, published 1893 in Comm. Soc. math. Kharkow. Newly printed: Ann. of math. Stud. 17, Princeton, 1949.
-
-
-
-
51
-
-
0000643682
-
On Liapounoff's Conditions of Stability
-
J. L. MASSERA, On Liapounoff's Conditions of Stability, Ann. of Math. 50 (1949) 2, 705-721.
-
(1949)
Ann. of Math
, vol.50
, Issue.2
, pp. 705-721
-
-
MASSERA, J.L.1
-
52
-
-
14944361055
-
Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting
-
F. J. NARCOWICH, J. D. WARD & H. WENDLAND, Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting, Math. Comp. 74 (2005), 643-763.
-
(2005)
Math. Comp
, vol.74
, pp. 643-763
-
-
NARCOWICH, F.J.1
WARD, J.D.2
WENDLAND, H.3
-
53
-
-
85009390495
-
-
M. J. D. POWELL, The Theory of Radial Basis Function Approximation in 1990, in: Advances in Numerical Analysis II: Wavelets, Subdivision Algorithms, and Radial Basis Functions, W. A. Light (ed.), Oxford University Press, 1992, 105-210.
-
M. J. D. POWELL, The Theory of Radial Basis Function Approximation in 1990, in: Advances in Numerical Analysis II: Wavelets, Subdivision Algorithms, and Radial Basis Functions, W. A. Light (ed.), Oxford University Press, 1992, 105-210.
-
-
-
-
54
-
-
51249166702
-
Error estimates and condition numbers for radial basis function interpolation
-
R. SCHABACK, Error estimates and condition numbers for radial basis function interpolation, Adv. Comput. Math. 3 (1995), 251-264.
-
(1995)
Adv. Comput. Math
, vol.3
, pp. 251-264
-
-
SCHABACK, R.1
-
55
-
-
3142684323
-
Using compactly supported radial basis functions to solve partial differential equations
-
C. Chen, C. Brebbia & D. Pepper eds, WitPress, Southampton, Boston
-
R. SCHABACK & H. WENDLAND, Using compactly supported radial basis functions to solve partial differential equations, in: Boundary Element Technology XIII (invited lecture), C. Chen, C. Brebbia & D. Pepper (eds.), WitPress, Southampton, Boston, 1999, 311-324.
-
(1999)
Boundary Element Technology XIII (invited lecture)
, pp. 311-324
-
-
SCHABACK, R.1
WENDLAND, H.2
-
59
-
-
0034426073
-
A smooth Lyapunov function from a class-KL estimate involving two positive semidefinite functions
-
A. R. TEEL & L. PRALY, A smooth Lyapunov function from a class-KL estimate involving two positive semidefinite functions, ESAIM Control Optim. Calc. Var. 5 (2000), 313-367.
-
(2000)
ESAIM Control Optim. Calc. Var
, vol.5
, pp. 313-367
-
-
TEEL, A.R.1
PRALY, L.2
-
60
-
-
0021817154
-
Maximal Lyapunov Functions and Domains of Attraction for Autonomous Nonlinear Systems
-
A. VANNELLI & M. VIDYASAGAR, Maximal Lyapunov Functions and Domains of Attraction for Autonomous Nonlinear Systems, Automatica J. IFAC 21 (1985) 1, 69-80.
-
(1985)
Automatica J. IFAC
, vol.21
, Issue.1
, pp. 69-80
-
-
VANNELLI, A.1
VIDYASAGAR, M.2
-
63
-
-
0000764217
-
Error estimates for interpolation by compactly supported radial basis functions of minimal degree
-
H. WENDLAND, Error estimates for interpolation by compactly supported radial basis functions of minimal degree, J. Approx. Theory 93 (1998), 258-272.
-
(1998)
J. Approx. Theory
, vol.93
, pp. 258-272
-
-
WENDLAND, H.1
-
65
-
-
0000716368
-
The structure of the Level Surfaces of a Lyapunov Function
-
F. WESLEY WILSON, JR., The structure of the Level Surfaces of a Lyapunov Function, J. Differential Equations 3 (1967), 323-329.
-
(1967)
J. Differential Equations
, vol.3
, pp. 323-329
-
-
WESLEY WILSON JR., F.1
-
66
-
-
84968514083
-
Smoothing Derivatives of Functions and Applications
-
F. WESLEY WILSON, JR., Smoothing Derivatives of Functions and Applications, Trans. Amer. Math. Soc. 139 (1969), 413-428.
-
(1969)
Trans. Amer. Math. Soc
, vol.139
, pp. 413-428
-
-
WESLEY WILSON JR., F.1
-
68
-
-
34247115327
-
Hermite-Birkhoff interpolation of scattered data by radial basis functions
-
Z. WU, Hermite-Birkhoff interpolation of scattered data by radial basis functions, Approx. Theory Appl. 8 (1995), 283-292.
-
(1995)
Approx. Theory Appl
, vol.8
, pp. 283-292
-
-
WU, Z.1
-
69
-
-
14544290310
-
Local error estimates for radial basis function interpolation of scattered data
-
Z. WU & R. SCHABACK, Local error estimates for radial basis function interpolation of scattered data, IMA J. Numer. Anal. 13 (1993), 13-27.
-
(1993)
IMA J. Numer. Anal
, vol.13
, pp. 13-27
-
-
WU, Z.1
SCHABACK, R.2
|