-
2
-
-
0031257967
-
Asymptotic controllability implies feedback stabilization
-
Clarke F.H., Ledyaev Y.S., Sontag E.D., and Subbotin A.I. Asymptotic controllability implies feedback stabilization. IEEE Trans. Automat. Control 42 10 (1997) 1394-1407
-
(1997)
IEEE Trans. Automat. Control
, vol.42
, Issue.10
, pp. 1394-1407
-
-
Clarke, F.H.1
Ledyaev, Y.S.2
Sontag, E.D.3
Subbotin, A.I.4
-
5
-
-
0001018397
-
Asymptotic stability equals exponential stability, and ISS equals finite energy gain-If you twist your eyes
-
Grune L., Sontag E.D., and Wirth F.R. Asymptotic stability equals exponential stability, and ISS equals finite energy gain-If you twist your eyes. Systems Control Lett. 38 (1999) 127-134
-
(1999)
Systems Control Lett.
, vol.38
, pp. 127-134
-
-
Grune, L.1
Sontag, E.D.2
Wirth, F.R.3
-
6
-
-
0004905389
-
Stabilization by sampled and discrete feedback with positive sampling rate
-
Aeyels D., Lamnabhi-Lagarrigue F., and van der Schaft A. (Eds), Springer-Verlag, London
-
Grune L. Stabilization by sampled and discrete feedback with positive sampling rate. In: Aeyels D., Lamnabhi-Lagarrigue F., and van der Schaft A. (Eds). Stability and Stabilization of Nonlinear Systems (1999), Springer-Verlag, London 165-182
-
(1999)
Stability and Stabilization of Nonlinear Systems
, pp. 165-182
-
-
Grune, L.1
-
8
-
-
0003835647
-
-
Springer-Verlag, Berlin, Heidelberg
-
Hairer E., Lubich C., and Wanner G. Geometric Numerical Integration. Structure Preserving Algorithms for Ordinary Differential Equations (2002), Springer-Verlag, Berlin, Heidelberg
-
(2002)
Geometric Numerical Integration. Structure Preserving Algorithms for Ordinary Differential Equations
-
-
Hairer, E.1
Lubich, C.2
Wanner, G.3
-
10
-
-
0033884559
-
Stability analysis of digital control systems with time-varying sampling periods
-
Hu B., and Michel A.N. Stability analysis of digital control systems with time-varying sampling periods. Automatica 36 (2000) 897-905
-
(2000)
Automatica
, vol.36
, pp. 897-905
-
-
Hu, B.1
Michel, A.N.2
-
11
-
-
0033728228
-
Robustness analysis of digital control systems with time-varying sampling periods
-
Hu B., and Michel A.N. Robustness analysis of digital control systems with time-varying sampling periods. J. Franklin Inst. 337 (2000) 117-130
-
(2000)
J. Franklin Inst.
, vol.337
, pp. 117-130
-
-
Hu, B.1
Michel, A.N.2
-
13
-
-
0037079760
-
A converse Lyapunov theorem for discrete-time systems with disturbances
-
Jiang Z.P., and Wang Y. A converse Lyapunov theorem for discrete-time systems with disturbances. Systems Control Lett. 45 1 (2002) 49-58
-
(2002)
Systems Control Lett.
, vol.45
, Issue.1
, pp. 49-58
-
-
Jiang, Z.P.1
Wang, Y.2
-
14
-
-
0000383132
-
Mathematical description of linear dynamical systems
-
Kalman R.E. Mathematical description of linear dynamical systems. J. SIAM Control 1 2 (1963) 152-192
-
(1963)
J. SIAM Control
, vol.1
, Issue.2
, pp. 152-192
-
-
Kalman, R.E.1
-
15
-
-
2942609238
-
A converse Lyapunov theorem for non-uniform in time global asymptotic stability and its application to feedback stabilization
-
Karafyllis I., and Tsinias J. A converse Lyapunov theorem for non-uniform in time global asymptotic stability and its application to feedback stabilization. SIAM J. Control Optim. 42 3 (2003) 936-965
-
(2003)
SIAM J. Control Optim.
, vol.42
, Issue.3
, pp. 936-965
-
-
Karafyllis, I.1
Tsinias, J.2
-
16
-
-
28844501440
-
The non-uniform in time small-gain theorem for a wide class of control systems with outputs
-
Karafyllis I. The non-uniform in time small-gain theorem for a wide class of control systems with outputs. Eur. J. Control 10 4 (2004) 307-323
-
(2004)
Eur. J. Control
, vol.10
, Issue.4
, pp. 307-323
-
-
Karafyllis, I.1
-
17
-
-
33644801119
-
Non-uniform robust global asymptotic stability for discrete-time systems and applications to numerical analysis
-
Karafyllis I. Non-uniform robust global asymptotic stability for discrete-time systems and applications to numerical analysis. IMA J. Math. Control Inform. 23 1 (2006) 11-41
-
(2006)
IMA J. Math. Control Inform.
, vol.23
, Issue.1
, pp. 11-41
-
-
Karafyllis, I.1
-
20
-
-
0029775547
-
A smooth converse Lyapunov theorem for robust stability
-
Lin Y., Sontag E.D., and Wang Y. A smooth converse Lyapunov theorem for robust stability. SIAM J. Control Optim. 34 (1996) 124-160
-
(1996)
SIAM J. Control Optim.
, vol.34
, pp. 124-160
-
-
Lin, Y.1
Sontag, E.D.2
Wang, Y.3
-
21
-
-
33748362405
-
Asymptotic controllability implies continuous-discrete time feedback stabilization
-
Springer-Verlag
-
Marchand N., and Alamir M. Asymptotic controllability implies continuous-discrete time feedback stabilization. Nonlinear Control in the Year 2000, vol. 2 (2000), Springer-Verlag 63-79
-
(2000)
Nonlinear Control in the Year 2000, vol. 2
, pp. 63-79
-
-
Marchand, N.1
Alamir, M.2
-
24
-
-
0037364787
-
Asymptotic controllability and observability imply semiglobal practical asymptotic stabilizability by sampled-data output feedback
-
Shim H., and Teel A.R. Asymptotic controllability and observability imply semiglobal practical asymptotic stabilizability by sampled-data output feedback. Automatica (2003) 441-454
-
(2003)
Automatica
, pp. 441-454
-
-
Shim, H.1
Teel, A.R.2
-
26
-
-
0348241184
-
Comments on integral variants of ISS
-
Sontag E.D. Comments on integral variants of ISS. Systems Control Lett. 34 (1998) 93-100
-
(1998)
Systems Control Lett.
, vol.34
, pp. 93-100
-
-
Sontag, E.D.1
-
27
-
-
0033276542
-
Clocks and insensitivity to small measurement errors
-
Sontag E.D. Clocks and insensitivity to small measurement errors. ESAIM: Control Optim. Calc. Var. 4 (1999) 537-557
-
(1999)
ESAIM: Control Optim. Calc. Var.
, vol.4
, pp. 537-557
-
-
Sontag, E.D.1
-
28
-
-
0000163264
-
Notions of input to output stability
-
Sontag E.D., and Wang Y. Notions of input to output stability. Syst. Control Lett. 38 (1999) 235-248
-
(1999)
Syst. Control Lett.
, vol.38
, pp. 235-248
-
-
Sontag, E.D.1
Wang, Y.2
-
29
-
-
0034459031
-
Lyapunov characterizations of input-to-output stability
-
Sontag E.D., and Wang Y. Lyapunov characterizations of input-to-output stability. SIAM J. Control Optim. 39 (2001) 226-249
-
(2001)
SIAM J. Control Optim.
, vol.39
, pp. 226-249
-
-
Sontag, E.D.1
Wang, Y.2
|