메뉴 건너뛰기




Volumn 44, Issue 10-11, 2011, Pages 2358-2366

Transfer latent variable model based on divergence analysis

Author keywords

Bregman divergence; Dimensionality reduction; Latent variable model; Transfer learning

Indexed keywords

BREGMAN DIVERGENCES; DATA SETS; DIFFERENT DOMAINS; DIMENSIONALITY REDUCTION; LATENT VARIABLE MODELS; REAL DATA SETS; TESTING SAMPLES; TRAINING DATASET; TRAINING MODEL; TRAINING SAMPLE; TRANSFER LEARNING;

EID: 79958858308     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2010.06.013     Document Type: Article
Times cited : (27)

References (48)
  • 1
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • H. Hotelling Analysis of a complex of statistical variables into principal components Journal of Educational Psychology 24 1933 417 441
    • (1933) Journal of Educational Psychology , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 2
    • 57749121315 scopus 로고    scopus 로고
    • Multi-label dimensionality reduction via dependency maximization
    • Chicago, IL
    • Y. Zhang Z.-H. Zhou, Multi-label dimensionality reduction via dependency maximization, in: AAAI Conference on Artificial Intelligence, Chicago, IL, 2008, pp. 15031505.
    • (2008) AAAI Conference on Artificial Intelligence , pp. 1503-1505
    • Zhang, Y.1    Zhou, Z.-H.2
  • 6
    • 8644230223 scopus 로고    scopus 로고
    • Locality preserving indexing for document representation
    • X. He, D. Cai, H. Liu, W. Ma, Locality preserving indexing for document representation, SIGIR'04, 2004, pp. 96103.
    • (2004) SIGIR'04 , pp. 96-103
    • He, X.1    Cai, D.2    Liu, H.3    Ma, W.4
  • 9
    • 72949097899 scopus 로고    scopus 로고
    • Laplacian regularized d-optimal design for active learning and its application to image retrieval
    • X. He Laplacian regularized d-optimal design for active learning and its application to image retrieval IEEE Transactions on Image Processing 19 1 2010 254 263
    • (2010) IEEE Transactions on Image Processing , vol.19 , Issue.1 , pp. 254-263
    • He, X.1
  • 14
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • B. Scholkopf, A. Smola, and K.-R. Muller Nonlinear component analysis as a kernel eigenvalue problem Neural Computation 10 5 1998 1299 1319 (Pubitemid 128463674)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 15
    • 45549085231 scopus 로고    scopus 로고
    • KPCA for semantic object extraction in images
    • J. Li, X. Li, and D. Tao KPCA for semantic object extraction in images Pattern Recognition 41 10 2008 3244 3250
    • (2008) Pattern Recognition , vol.41 , Issue.10 , pp. 3244-3250
    • Li, J.1    Li, X.2    Tao, D.3
  • 16
    • 45549097571 scopus 로고    scopus 로고
    • Image categorization: Graph edit distanceedge direction histogram
    • X. Gao, B. Xiao, D. Tao, and X. Li Image categorization: graph edit distanceedge direction histogram Pattern Recognition 41 10 2008 3179 3191
    • (2008) Pattern Recognition , vol.41 , Issue.10 , pp. 3179-3191
    • Gao, X.1    Xiao, B.2    Tao, D.3    Li, X.4
  • 17
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S. Roweis, and L. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 5500 2000 2323 2326 (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 20
    • 67349127269 scopus 로고    scopus 로고
    • Scene segmentation based on IPCA for visual surveillance
    • Y. Yuan, Y. Pang, J. Pan, and X. Li Scene segmentation based on IPCA for visual surveillance Neurocomputing 72 1012 2009 2450 2454
    • (2009) Neurocomputing , vol.72 , Issue.1012 , pp. 2450-2454
    • Yuan, Y.1    Pang, Y.2    Pan, J.3    Li, X.4
  • 21
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • DOI 10.1162/089976603321780317
    • M. Belkin, and P. Niyogi Laplacian eigenmaps for dimensionality reduction and data representation Neural Computation 15 6 2003 1373 1396 (Pubitemid 37049796)
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 22
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J.B. Tenenbaum, V. Silva, and J.C. Langford A global geometric framework for nonlinear dimensionality reduction Science 290 5500 2000 2319 2323 (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 25
  • 26
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with Gaussian process latent variable models
    • N.D. Lawrence Probabilistic non-linear principal component analysis with Gaussian process latent variable models Journal of Machine Learning Research 6 2005 1783 1816
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1783-1816
    • Lawrence, N.D.1
  • 31
    • 77952894864 scopus 로고    scopus 로고
    • Bregman divergence based regularization for transfer subspace learning
    • S. Si, D. Tao, B. Geng, Bregman divergence based regularization for transfer subspace learning, IEEE Transactions on Knowledge and Data Engineering, 22 (7) (2010) 929942.
    • (2010) IEEE Transactions on Knowledge and Data Engineering , vol.22 , Issue.7 , pp. 929-942
    • Si, S.1    Tao, D.2    Geng, B.3
  • 38
    • 49949144765 scopus 로고
    • The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
    • L.M. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming USSR Computational Mathematics and Physics 7 1967 200 217
    • (1967) USSR Computational Mathematics and Physics , vol.7 , pp. 200-217
    • Bregman, L.M.1
  • 44
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • M.F. Møller A scaled conjugate gradient algorithm for fast supervised learning Neural Networks 6 4 1993 525 533
    • (1993) Neural Networks , vol.6 , Issue.4 , pp. 525-533
    • Møller, M.F.1
  • 46
    • 79958774535 scopus 로고    scopus 로고
    • 〈http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase. html〉
  • 47
    • 79958787276 scopus 로고    scopus 로고
    • 〈http://cvc.yale.edu/projects/yalefaces/yalefaces.html〉
  • 48
    • 79958839324 scopus 로고    scopus 로고
    • 〈http://vision.ucsd.edu/leekc/ExtYaleDatabase/ExtYaleB.html〉


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.