메뉴 건너뛰기




Volumn , Issue , 2008, Pages 298-304

Transductive multi-label learning for video concept detection

Author keywords

Multi label interdependence; Transductive learning; Video concept detection

Indexed keywords

CLASSIFICATION APPROACH; COMPUTATIONAL COSTS; DATA SETS; INTEGRATED FRAMEWORKS; MULTI-LABEL; MULTIPLE LABELS; SEMI-SUPERVISED; TRANSDUCTIVE LEARNING; TRECVID; VIDEO CONCEPT DETECTION;

EID: 70450230600     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1460096.1460145     Document Type: Conference Paper
Times cited : (19)

References (30)
  • 1
    • 33749256006 scopus 로고    scopus 로고
    • Maximum margin semi-supervised learning for structured variables
    • Y. Altun, D. A. McAllester, and M. Belkin. Maximum Margin Semi-Supervised Learning for Structured Variables. In NIPS, 2005.
    • (2005) NIPS
    • Altun, Y.1    Mcallester, D.A.2    Belkin, M.3
  • 2
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 3
    • 84898958346 scopus 로고    scopus 로고
    • Semi-supervised support vector machines
    • K. P. Bennett and A. Demiriz. Semi-Supervised Support Vector Machines. In NIPS, pages 368-374, 1998.
    • (1998) NIPS , pp. 368-374
    • Bennett, K.P.1    Demiriz, A.2
  • 4
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of Min-Cut/Max-Flow algorithms for energy minimization in vision
    • Y. Boykov and V. Kolmogorov. An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Trans. Pattern Anal. Mach. Intell., 26(9):1124-1137, 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 5
    • 33749237544 scopus 로고    scopus 로고
    • Semi-supervised learning for structured output variables
    • U. Brefeld and T. Scheffer. Semi-Supervised Learning for Structured Output Variables. In ICML, pages 145-152, 2006.
    • (2006) ICML , pp. 145-152
    • Brefeld, U.1    Scheffer, T.2
  • 6
    • 52649118114 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by solving a sylvester equation
    • G. Chen, Y. Song, F. Wang, and C. Zhang. Semi-Supervised Multi-Label Learning by Solving a Sylvester Equation. In SDM, 2008.
    • (2008) SDM
    • Chen, G.1    Song, Y.2    Wang, F.3    Zhang, C.4
  • 9
    • 37849005540 scopus 로고    scopus 로고
    • Active context-based concept fusion with partial user labels
    • W. Jiang, S.-F. Chang, and A. C. Loui. Active Context-Based Concept Fusion with Partial User Labels. In ICIP, pages 2917-2920, 2006.
    • (2006) ICIP , pp. 2917-2920
    • Jiang, W.1    Chang, S.-F.2    Loui, A.C.3
  • 10
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims. Transductive Inference for Text Classification using Support Vector Machines. In ICML, pages 200-209, 1999.
    • (1999) ICML , pp. 200-209
    • Joachims, T.1
  • 11
    • 33750129298 scopus 로고    scopus 로고
    • Convergent tree-reweighted message passing for energy minimization
    • V. Kolmogorov. Convergent Tree-Reweighted Message Passing for Energy Minimization. IEEE Trans. Pattern Anal. Mach. Intell., 28(10):1568-1583, 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.10 , pp. 1568-1583
    • Kolmogorov, V.1
  • 12
    • 0001566920 scopus 로고
    • Approximating discrete probability distributions
    • H. H. Ku and S. Kullback. Approximating Discrete Probability Distributions. IEEE Transactions on Information Theory, IT-15(4):444-447, 1969.
    • (1969) IEEE Transactions on Information Theory , vol.IT-15 , Issue.4 , pp. 444-447
    • Ku, H.H.1    Kullback, S.2
  • 13
    • 84864032258 scopus 로고    scopus 로고
    • Learning to model spatial dependency: semi-supervised discriminative random fields
    • C.-H. Lee, S. Wang, F. Jiao, D. Schuurmans, and R. Greiner. Learning to Model Spatial Dependency: Semi-Supervised Discriminative Random Fields. In NIPS, pages 793-800, 2006.
    • (2006) NIPS , pp. 793-800
    • Lee, C.-H.1    Wang, S.2    Jiao, F.3    Schuurmans, D.4    Greiner, R.5
  • 14
    • 70350647018 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by constrained non-negative matrix factorization
    • Y. Liu, R. Jin, and L. Yang. Semi-supervised Multi-label Learning by Constrained Non-Negative Matrix Factorization. In AAAI, 2006.
    • (2006) AAAI
    • Liu, Y.1    Jin, R.2    Yang, L.3
  • 16
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. I. Jordan, and Y. Weiss. On Spectral Clustering: Analysis and an Algorithm. In NIPS, pages 849-856, 2001.
    • (2001) NIPS , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 18
    • 33845530850 scopus 로고    scopus 로고
    • Semi-automatic video annotation based on active learning with multiple complementary predictors
    • Y. Song, X.-S. Hua, L.-R. Dai, and M. Wang. Semi-Automatic Video Annotation based on Active Learning with Multiple Complementary Predictors. In Multimedia Information Retrieval, pages 97-104, 2005.
    • (2005) Multimedia Information Retrieval , pp. 97-104
    • Song, Y.1    Hua, X.-S.2    Dai, L.-R.3    Wang, M.4
  • 19
    • 37849052258 scopus 로고    scopus 로고
    • Structure-sensitive manifold ranking for video concept detection
    • J. Tang, X.-S. Hua, G.-J. Qi, M. Wang, T. Mei, and X. Wu. Structure-Sensitive Manifold Ranking for Video Concept Detection. In ACM Multimedia, pages 852-861, 2007.
    • (2007) ACM Multimedia , pp. 852-861
    • Tang, J.1    Hua, X.-S.2    Qi, G.-J.3    Wang, M.4    Mei, T.5    Wu, X.6
  • 20
    • 70450272665 scopus 로고    scopus 로고
    • TRECVID2005. http://www-nlpir.nist.gov/projects/trecvid/.
    • TRECVID2005
  • 21
    • 37849049900 scopus 로고    scopus 로고
    • Optimizing multi-graph learning: Towards a unified video annotation scheme
    • M. Wang, X.-S. Hua, X. Yuan, Y. Song, and L.-R. Dai. Optimizing Multi-Graph Learning: towards a Unified Video Annotation Scheme. In ACM Multimedia, pages 862-871, 2007.
    • (2007) ACM Multimedia , pp. 862-871
    • Wang, M.1    Hua, X.-S.2    Yuan, X.3    Song, Y.4    Dai, L.-R.5
  • 22
    • 34547160155 scopus 로고    scopus 로고
    • Automatic video annotation by semi-supervised learning with kernel density estimation
    • M. Wang, Y. Song, X. Yuan, H. Zhang, X.-S. Hua, and S. Li. Automatic Video Annotation by Semi-Supervised Learning with Kernel Density Estimation. In ACM Multimedia, pages 967-976, 2006.
    • (2006) ACM Multimedia , pp. 967-976
    • Wang, M.1    Song, Y.2    Yuan, X.3    Zhang, H.4    Hua, X.-S.5    Li, S.6
  • 23
    • 33745161085 scopus 로고    scopus 로고
    • Semi-supervised cross feature learning for semantic concept detection in videos
    • R. Yan and M. R. Naphade. Semi-Supervised Cross Feature Learning for Semantic Concept Detection in Videos. In CVPR (1), pages 657-663, 2005.
    • (2005) CVPR (1) , pp. 657-663
    • Yan, R.1    Naphade, M.R.2
  • 24
    • 34247562914 scopus 로고    scopus 로고
    • Mining relationship between video concepts using probabilistic graphical models
    • R. Yan, M. yu Chen, and A. G. Hauptmann. Mining Relationship Between Video Concepts using Probabilistic Graphical Models. In ICME, pages 301-304, 2006.
    • (2006) ICME , pp. 301-304
    • Yan, R.1    Chen, M.Y.2    Hauptmann, A.G.3
  • 26
    • 54049147025 scopus 로고    scopus 로고
    • Graph-based semi-supervised learning with multi-label
    • Z.-J. Zha, T. Mei, J. Wang, Z. Wang, and X.-S. Hua. Graph-Based Semi-Supervised Learning with Multi-Label. In ICME, pages 1321-1324, 2008.
    • (2008) ICME , pp. 1321-1324
    • Zha, Z.-J.1    Mei, T.2    Wang, J.3    Wang, Z.4    Hua, X.-S.5
  • 29
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions. In ICML, pages 912-919, 2003.
    • (2003) ICML , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 30
    • 34547990643 scopus 로고    scopus 로고
    • Transductive support vector machines for structured variables
    • A. Zien, U. Brefeld, and T. Scheffer. Transductive Support Vector Machines for Structured Variables. In ICML, pages 1183-1190, 2007.
    • (2007) ICML , pp. 1183-1190
    • Zien, A.1    Brefeld, U.2    Scheffer, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.