-
1
-
-
33749256006
-
Maximum margin semi-supervised learning for structured variables
-
Y. Altun, D. A. McAllester, and M. Belkin. Maximum Margin Semi-Supervised Learning for Structured Variables. In NIPS, 2005.
-
(2005)
NIPS
-
-
Altun, Y.1
Mcallester, D.A.2
Belkin, M.3
-
2
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani. Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
3
-
-
84898958346
-
Semi-supervised support vector machines
-
K. P. Bennett and A. Demiriz. Semi-Supervised Support Vector Machines. In NIPS, pages 368-374, 1998.
-
(1998)
NIPS
, pp. 368-374
-
-
Bennett, K.P.1
Demiriz, A.2
-
4
-
-
4344598245
-
An experimental comparison of Min-Cut/Max-Flow algorithms for energy minimization in vision
-
Y. Boykov and V. Kolmogorov. An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Trans. Pattern Anal. Mach. Intell., 26(9):1124-1137, 2004.
-
(2004)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.26
, Issue.9
, pp. 1124-1137
-
-
Boykov, Y.1
Kolmogorov, V.2
-
5
-
-
33749237544
-
Semi-supervised learning for structured output variables
-
U. Brefeld and T. Scheffer. Semi-Supervised Learning for Structured Output Variables. In ICML, pages 145-152, 2006.
-
(2006)
ICML
, pp. 145-152
-
-
Brefeld, U.1
Scheffer, T.2
-
6
-
-
52649118114
-
Semi-supervised multi-label learning by solving a sylvester equation
-
G. Chen, Y. Song, F. Wang, and C. Zhang. Semi-Supervised Multi-Label Learning by Solving a Sylvester Equation. In SDM, 2008.
-
(2008)
SDM
-
-
Chen, G.1
Song, Y.2
Wang, F.3
Zhang, C.4
-
8
-
-
13444263430
-
Manifold-ranking based image retrieval
-
J. He, M. Li, H. Zhang, H. Tong, and C. Zhang. Manifold-Ranking based Image Retrieval. In ACM Multimedia, pages 9-16, 2004.
-
(2004)
ACM Multimedia
, pp. 9-16
-
-
He, J.1
Li, M.2
Zhang, H.3
Tong, H.4
Zhang, C.5
-
9
-
-
37849005540
-
Active context-based concept fusion with partial user labels
-
W. Jiang, S.-F. Chang, and A. C. Loui. Active Context-Based Concept Fusion with Partial User Labels. In ICIP, pages 2917-2920, 2006.
-
(2006)
ICIP
, pp. 2917-2920
-
-
Jiang, W.1
Chang, S.-F.2
Loui, A.C.3
-
10
-
-
1942483137
-
Transductive inference for text classification using support vector machines
-
T. Joachims. Transductive Inference for Text Classification using Support Vector Machines. In ICML, pages 200-209, 1999.
-
(1999)
ICML
, pp. 200-209
-
-
Joachims, T.1
-
11
-
-
33750129298
-
Convergent tree-reweighted message passing for energy minimization
-
V. Kolmogorov. Convergent Tree-Reweighted Message Passing for Energy Minimization. IEEE Trans. Pattern Anal. Mach. Intell., 28(10):1568-1583, 2006.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.10
, pp. 1568-1583
-
-
Kolmogorov, V.1
-
12
-
-
0001566920
-
Approximating discrete probability distributions
-
H. H. Ku and S. Kullback. Approximating Discrete Probability Distributions. IEEE Transactions on Information Theory, IT-15(4):444-447, 1969.
-
(1969)
IEEE Transactions on Information Theory
, vol.IT-15
, Issue.4
, pp. 444-447
-
-
Ku, H.H.1
Kullback, S.2
-
13
-
-
84864032258
-
Learning to model spatial dependency: semi-supervised discriminative random fields
-
C.-H. Lee, S. Wang, F. Jiao, D. Schuurmans, and R. Greiner. Learning to Model Spatial Dependency: Semi-Supervised Discriminative Random Fields. In NIPS, pages 793-800, 2006.
-
(2006)
NIPS
, pp. 793-800
-
-
Lee, C.-H.1
Wang, S.2
Jiao, F.3
Schuurmans, D.4
Greiner, R.5
-
14
-
-
70350647018
-
Semi-supervised multi-label learning by constrained non-negative matrix factorization
-
Y. Liu, R. Jin, and L. Yang. Semi-supervised Multi-label Learning by Constrained Non-Negative Matrix Factorization. In AAAI, 2006.
-
(2006)
AAAI
-
-
Liu, Y.1
Jin, R.2
Yang, L.3
-
15
-
-
33746608527
-
A light scale concept ontology for multimedia understanding for TRECVID 2005
-
M. R. Naphade, L. Kennedy, J. R. Kender, S.-F. Chang, J. R. Smith, P. Over, and A. Hauptmann. A Light Scale Concept Ontology for Multimedia Understanding for TRECVID 2005. In IBM Research Report RC23612 (W0505-104), 2005.
-
(2005)
IBM Research Report RC23612 (W0505-104)
-
-
Naphade, M.R.1
Kennedy, L.2
Kender, J.R.3
Chang, S.-F.4
Smith, J.R.5
Over, P.6
Hauptmann, A.7
-
16
-
-
0041875229
-
On spectral clustering: Analysis and an algorithm
-
A. Y. Ng, M. I. Jordan, and Y. Weiss. On Spectral Clustering: Analysis and an Algorithm. In NIPS, pages 849-856, 2001.
-
(2001)
NIPS
, pp. 849-856
-
-
Ng, A.Y.1
Jordan, M.I.2
Weiss, Y.3
-
17
-
-
37849015906
-
Correlative multi-label video annotation
-
G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, T. Mei, and H.-J. Zhang. Correlative Multi-Label Video Annotation. In ACM Multimedia, pages 17-26, 2007.
-
(2007)
ACM Multimedia
, pp. 17-26
-
-
Qi, G.-J.1
Hua, X.-S.2
Rui, Y.3
Tang, J.4
Mei, T.5
Zhang, H.-J.6
-
18
-
-
33845530850
-
Semi-automatic video annotation based on active learning with multiple complementary predictors
-
Y. Song, X.-S. Hua, L.-R. Dai, and M. Wang. Semi-Automatic Video Annotation based on Active Learning with Multiple Complementary Predictors. In Multimedia Information Retrieval, pages 97-104, 2005.
-
(2005)
Multimedia Information Retrieval
, pp. 97-104
-
-
Song, Y.1
Hua, X.-S.2
Dai, L.-R.3
Wang, M.4
-
19
-
-
37849052258
-
Structure-sensitive manifold ranking for video concept detection
-
J. Tang, X.-S. Hua, G.-J. Qi, M. Wang, T. Mei, and X. Wu. Structure-Sensitive Manifold Ranking for Video Concept Detection. In ACM Multimedia, pages 852-861, 2007.
-
(2007)
ACM Multimedia
, pp. 852-861
-
-
Tang, J.1
Hua, X.-S.2
Qi, G.-J.3
Wang, M.4
Mei, T.5
Wu, X.6
-
20
-
-
70450272665
-
-
TRECVID2005. http://www-nlpir.nist.gov/projects/trecvid/.
-
TRECVID2005
-
-
-
21
-
-
37849049900
-
Optimizing multi-graph learning: Towards a unified video annotation scheme
-
M. Wang, X.-S. Hua, X. Yuan, Y. Song, and L.-R. Dai. Optimizing Multi-Graph Learning: towards a Unified Video Annotation Scheme. In ACM Multimedia, pages 862-871, 2007.
-
(2007)
ACM Multimedia
, pp. 862-871
-
-
Wang, M.1
Hua, X.-S.2
Yuan, X.3
Song, Y.4
Dai, L.-R.5
-
22
-
-
34547160155
-
Automatic video annotation by semi-supervised learning with kernel density estimation
-
M. Wang, Y. Song, X. Yuan, H. Zhang, X.-S. Hua, and S. Li. Automatic Video Annotation by Semi-Supervised Learning with Kernel Density Estimation. In ACM Multimedia, pages 967-976, 2006.
-
(2006)
ACM Multimedia
, pp. 967-976
-
-
Wang, M.1
Song, Y.2
Yuan, X.3
Zhang, H.4
Hua, X.-S.5
Li, S.6
-
23
-
-
33745161085
-
Semi-supervised cross feature learning for semantic concept detection in videos
-
R. Yan and M. R. Naphade. Semi-Supervised Cross Feature Learning for Semantic Concept Detection in Videos. In CVPR (1), pages 657-663, 2005.
-
(2005)
CVPR (1)
, pp. 657-663
-
-
Yan, R.1
Naphade, M.R.2
-
24
-
-
34247562914
-
Mining relationship between video concepts using probabilistic graphical models
-
R. Yan, M. yu Chen, and A. G. Hauptmann. Mining Relationship Between Video Concepts using Probabilistic Graphical Models. In ICME, pages 301-304, 2006.
-
(2006)
ICME
, pp. 301-304
-
-
Yan, R.1
Chen, M.Y.2
Hauptmann, A.G.3
-
25
-
-
37849014528
-
Columbia university's baseline detectors for 374 LSCOM semantic visual concepts
-
March
-
A. Yanagawa, S.-F. Chang, L. Kennedy, and W. Hsu. Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts. Technical report, Columbia University, March 2007.
-
(2007)
Technical Report, Columbia University
-
-
Yanagawa, A.1
Chang, S.-F.2
Kennedy, L.3
Hsu, W.4
-
26
-
-
54049147025
-
Graph-based semi-supervised learning with multi-label
-
Z.-J. Zha, T. Mei, J. Wang, Z. Wang, and X.-S. Hua. Graph-Based Semi-Supervised Learning with Multi-Label. In ICME, pages 1321-1324, 2008.
-
(2008)
ICME
, pp. 1321-1324
-
-
Zha, Z.-J.1
Mei, T.2
Wang, J.3
Wang, Z.4
Hua, X.-S.5
-
27
-
-
22944492898
-
Learning with local and global consistency
-
D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with Local and Global Consistency. In NIPS, 2003.
-
(2003)
NIPS
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Schölkopf, B.5
-
29
-
-
1942484430
-
Semi-supervised learning using gaussian fields and harmonic functions
-
X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions. In ICML, pages 912-919, 2003.
-
(2003)
ICML
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
-
30
-
-
34547990643
-
Transductive support vector machines for structured variables
-
A. Zien, U. Brefeld, and T. Scheffer. Transductive Support Vector Machines for Structured Variables. In ICML, pages 1183-1190, 2007.
-
(2007)
ICML
, pp. 1183-1190
-
-
Zien, A.1
Brefeld, U.2
Scheffer, T.3
|