메뉴 건너뛰기




Volumn 21, Issue 3, 2011, Pages 375-393

Annealing evolutionary stochastic approximation Monte Carlo for global optimization

Author keywords

Convergence; Genetic algorithm; Global optimization; Simulated annealing; Stochastic approximation Monte Carlo

Indexed keywords


EID: 79958195868     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-010-9176-1     Document Type: Article
Times cited : (15)

References (58)
  • 1
    • 4444305178 scopus 로고    scopus 로고
    • A genetic algorithm for parameters of stochastic ordinary differential equations
    • Alcock, J., Burrage, K.: A genetic algorithm for parameters of stochastic ordinary differential equations. Comput. Stat. Data Anal. 47, 255-275 (2004).
    • (2004) Comput. Stat. Data Anal , vol.47 , pp. 255-275
    • Alcock, J.1    Burrage, K.2
  • 2
    • 0001075482 scopus 로고
    • Modified controlled random search algorithms
    • Ali, M. M., Storey, C.: Modified controlled random search algorithms. Int. J. Comput. Math. 54, 229-235 (1994).
    • (1994) Int. J. Comput. Math , vol.54 , pp. 229-235
    • Ali, M.M.1    Storey, C.2
  • 3
    • 22044435106 scopus 로고    scopus 로고
    • A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems
    • Ali, M. M., Khompatraporn, C., Zabinsky, Z. B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 31, 635-672 (2005).
    • (2005) J. Glob. Optim , vol.31 , pp. 635-672
    • Ali, M.M.1    Khompatraporn, C.2    Zabinsky, Z.B.3
  • 5
    • 33244461073 scopus 로고    scopus 로고
    • Stability of stochastic approximation under verifiable conditions
    • Andrieu, C., Moulines, É., Priouret, P.: Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44, 283-312 (2005).
    • (2005) SIAM J. Control Optim , vol.44 , pp. 283-312
    • Andrieu, C.1    Moulines, E.2    Priouret, P.3
  • 6
    • 0035964961 scopus 로고    scopus 로고
    • Optimal exact experimental designs with correlated errors through a simulated annealing
    • Angelis, L., Bora-Senta, E., Moyssiadis, C.: Optimal exact experimental designs with correlated errors through a simulated annealing. Comput. Stat. Data Anal. 37, 275-296 (2001).
    • (2001) Comput. Stat. Data Anal , vol.37 , pp. 275-296
    • Angelis, L.1    Bora-Senta, E.2    Moyssiadis, C.3
  • 8
    • 0035963957 scopus 로고    scopus 로고
    • Genetic algorithms for the identification of additive and innovation outliers in time series
    • Baragona, R., Battaglia, F., Calzini, C.: Genetic algorithms for the identification of additive and innovation outliers in time series. Comput. Stat. Data Anal. 37, 1-12 (2001).
    • (2001) Comput. Stat. Data Anal , vol.37 , pp. 1-12
    • Baragona, R.1    Battaglia, F.2    Calzini, C.3
  • 11
    • 0025460459 scopus 로고
    • Stopping rules for a random optimization method
    • Dorea, C. C. Y.: Stopping rules for a random optimization method. SIAM J. Control Optim. 28, 841-850 (1990).
    • (1990) SIAM J. Control Optim , vol.28 , pp. 841-850
    • Dorea, C.C.Y.1
  • 12
    • 84952507313 scopus 로고
    • Genetic algorithms for estimation problems with multiple optima, non-differentiability, and other irregular features
    • Dorsey, R. E., Mayer, W. J.: Genetic algorithms for estimation problems with multiple optima, non-differentiability, and other irregular features. J. Bus. Econ. Stat. 13, 53-66 (1995).
    • (1995) J. Bus. Econ. Stat , vol.13 , pp. 53-66
    • Dorsey, R.E.1    Mayer, W.J.2
  • 13
    • 1142280371 scopus 로고    scopus 로고
    • A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters
    • Duczmal, L., Assuncão, R.: A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters. Comput. Stat. Data Anal. 45, 269-286 (2004).
    • (2004) Comput. Stat. Data Anal , vol.45 , pp. 269-286
    • Duczmal, L.1    Assuncão, R.2
  • 16
    • 38249014983 scopus 로고
    • Optimal selection of statistical units: an approach via simulated annealing
    • Ferri, M., Piccioni, M.: Optimal selection of statistical units: an approach via simulated annealing. Comput. Stat. Data Anal. 13, 47-61 (1992).
    • (1992) Comput. Stat. Data Anal , vol.13 , pp. 47-61
    • Ferri, M.1    Piccioni, M.2
  • 17
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images
    • Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721-741 (1984).
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 19
    • 0032333313 scopus 로고    scopus 로고
    • Adaptive Markov chain Monte Carlo through regeneration
    • Gilks, W. R., Roberts, G. O., Sahu, S. K.: Adaptive Markov chain Monte Carlo through regeneration. J. Am. Stat. Assoc. 93, 1045-1054 (1998).
    • (1998) J. Am. Stat. Assoc , vol.93 , pp. 1045-1054
    • Gilks, W.R.1    Roberts, G.O.2    Sahu, S.K.3
  • 22
    • 34247273147 scopus 로고    scopus 로고
    • On learning strategies for evolutionary Monte Carlo
    • Goswami, G. R., Liu, J. S.: On learning strategies for evolutionary Monte Carlo. Stat. Comput. 17, 23-38 (2007).
    • (2007) Stat. Comput , vol.17 , pp. 23-38
    • Goswami, G.R.1    Liu, J.S.2
  • 23
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Harrio, H., Saksman, E., Tamminen, J.: An adaptive Metropolis algorithm. Bernoulli 7, 223-242 (2001).
    • (2001) Bernoulli , vol.7 , pp. 223-242
    • Harrio, H.1    Saksman, E.2    Tamminen, J.3
  • 24
    • 0032237525 scopus 로고    scopus 로고
    • Sequential stopping rules for random optimization methods with application to multistart local search
    • Hart, W. E.: Sequential stopping rules for random optimization methods with application to multistart local search. SIAM J. Optim. 9, 270-290 (1998).
    • (1998) SIAM J. Optim , vol.9 , pp. 270-290
    • Hart, W.E.1
  • 25
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97-109 (1970).
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 26
    • 26844575560 scopus 로고    scopus 로고
    • Tabu search directed by direct search methods for nonlinear global optimization
    • Hedar, A. R., Fukushima, M.: Tabu search directed by direct search methods for nonlinear global optimization. Eur. J. Oper. Res. 170, 329-349 (2006).
    • (2006) Eur. J. Oper. Res , vol.170 , pp. 329-349
    • Hedar, A.R.1    Fukushima, M.2
  • 27
    • 11944274075 scopus 로고
    • Monte Carlo simulation and global optimization without parameters
    • Hesselbo, B., Stinchcomble, R. B.: Monte Carlo simulation and global optimization without parameters. Phys. Rev. Lett. 74, 2151-2155 (1995).
    • (1995) Phys. Rev. Lett , vol.74 , pp. 2151-2155
    • Hesselbo, B.1    Stinchcomble, R.B.2
  • 30
    • 0011908609 scopus 로고
    • Testing the restrictions implied by the rational expectations hypothesis
    • Hoffman, D. L., Schmidt, P.: Testing the restrictions implied by the rational expectations hypothesis. J. Econom. 15, 265-287 (1981).
    • (1981) J. Econom , vol.15 , pp. 265-287
    • Hoffman, D.L.1    Schmidt, P.2
  • 32
    • 34547863202 scopus 로고    scopus 로고
    • On population-based simulation for static inference
    • Jasra, A., Stephens, D. A., Holmes, C. C.: On population-based simulation for static inference. Stat. Comput. 17, 263-279 (2007).
    • (2007) Stat. Comput , vol.17 , pp. 263-279
    • Jasra, A.1    Stephens, D.A.2    Holmes, C.C.3
  • 33
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P.: Optimization by simulated annealing. Science 220, 671-680 (1983).
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 34
    • 27744448918 scopus 로고    scopus 로고
    • Experimental testing of advanced scatter search designs for global optimization of multimodal functions
    • Laguna, M., Martí, R.: Experimental testing of advanced scatter search designs for global optimization of multimodal functions. J. Glob. Optim. 33, 235-255 (2005).
    • (2005) J. Glob. Optim , vol.33 , pp. 235-255
    • Laguna, M.1    Martí, R.2
  • 35
    • 0036744537 scopus 로고    scopus 로고
    • Dynamically weighted importance sampling in Monte Carlo computation
    • Liang, F.: Dynamically weighted importance sampling in Monte Carlo computation. J. Am. Stat. Assoc. 97, 807-821 (2002).
    • (2002) J. Am. Stat. Assoc , vol.97 , pp. 807-821
    • Liang, F.1
  • 36
    • 34548179892 scopus 로고    scopus 로고
    • Annealing stochastic approximation Monte Carlo for neural network training
    • Liang, F.: Annealing stochastic approximation Monte Carlo for neural network training. Mach. Learn. 68, 201-233 (2007).
    • (2007) Mach. Learn , vol.68 , pp. 201-233
    • Liang, F.1
  • 37
    • 0034403006 scopus 로고    scopus 로고
    • p model sampling and change-point problem
    • p model sampling and change-point problem. Stat. Sin. 10, 317-342 (2000).
    • (2000) Stat. Sin , vol.10 , pp. 317-342
    • Liang, F.1    Wong, W.H.2
  • 38
    • 1542573405 scopus 로고    scopus 로고
    • Real parameter evolutionary sampling with applications in Bayesian mixture models
    • Liang, F., Wong, W. H.: Real parameter evolutionary sampling with applications in Bayesian mixture models. J. Am. Stat. Assoc. 96, 653-666 (2001).
    • (2001) J. Am. Stat. Assoc , vol.96 , pp. 653-666
    • Liang, F.1    Wong, W.H.2
  • 39
    • 33947215681 scopus 로고    scopus 로고
    • Stochastic approximation in Monte Carlo computation
    • Liang, F., Liu, C., Carroll, R. J.: Stochastic approximation in Monte Carlo computation. J. Am. Stat. Assoc. 102, 305-320 (2007).
    • (2007) J. Am. Stat. Assoc , vol.102 , pp. 305-320
    • Liang, F.1    Liu, C.2    Carroll, R.J.3
  • 40
    • 33744730797 scopus 로고    scopus 로고
    • Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
    • Liang, J. J., Qing, A. K., Suganthan, P. N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10, 281-295 (2006).
    • (2006) IEEE Trans. Evol. Comput , vol.10 , pp. 281-295
    • Liang, J.J.1    Qing, A.K.2    Suganthan, P.N.3    Baskar, S.4
  • 42
    • 0030551974 scopus 로고    scopus 로고
    • Rates of convergence of the Hastings and Metropolis algorithms
    • Mengersen, K. L., Tweedie, R. L.: Rates of convergence of the Hastings and Metropolis algorithms. Ann. Stat. 24, 101-121 (1996).
    • (1996) Ann. Stat , vol.24 , pp. 101-121
    • Mengersen, K.L.1    Tweedie, R.L.2
  • 47
    • 0020792913 scopus 로고
    • Global optimization by controlled random search
    • Price, W. L.: Global optimization by controlled random search. J. Optim. Theory Appl. 40, 333-348 (1983).
    • (1983) J. Optim. Theory Appl , vol.40 , pp. 333-348
    • Price, W.L.1
  • 49
    • 0029768771 scopus 로고    scopus 로고
    • Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions
    • Salomon, R.: Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems 39, 263-278 (1996).
    • (1996) BioSystems , vol.39 , pp. 263-278
    • Salomon, R.1
  • 50
    • 0034914489 scopus 로고    scopus 로고
    • Theory of genetic algorithms
    • Schmitt, L. M.: Theory of genetic algorithms. Theor. Comput. Sci. 259, 1-61 (2001).
    • (2001) Theor. Comput. Sci , vol.259 , pp. 1-61
    • Schmitt, L.M.1
  • 51
    • 33750250686 scopus 로고    scopus 로고
    • Asymptotic convergence of scaled genetic algorithms to global optima
    • A. Menon (Ed.), Dordrecht: Kluwer Academic
    • Schmitt, L. M.: Asymptotic convergence of scaled genetic algorithms to global optima. In: Menon, A. (ed.) Frontiers of Evolutionary Computation, pp. 157-200. Kluwer Academic, Dordrecht (2004).
    • (2004) Frontiers of Evolutionary Computation , pp. 157-200
    • Schmitt, L.M.1
  • 52
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces
    • Storn, R., Price, K.: Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim 11, 341-359 (1997).
    • (1997) J. Glob. Optim , vol.11 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 53
    • 0001789959 scopus 로고    scopus 로고
    • Introduction to general state-space Markov chain theory
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter (Eds.), London: Chapman & Hall
    • Tierney, L.: Introduction to general state-space Markov chain theory. In: Gilks, W. R., Richardson, S., Spiegelhalter, D. J. (eds.) Markov Chain Monte Carlo in Practice, pp. 59-88. Chapman & Hall, London (1996).
    • (1996) Markov Chain Monte Carlo in Practice , pp. 59-88
    • Tierney, L.1
  • 54
    • 0003582694 scopus 로고
    • Lecture Notes in Computer Science, Berlin: Springer
    • Törn, A., Žilinskas, A.: Global Optimization. Lecture Notes in Computer Science, vol. 350. Springer, Berlin (1989).
    • (1989) Global Optimization , vol.350
    • Törn, A.1    Žilinskas, A.2
  • 55
    • 0001567344 scopus 로고
    • Identification of multivariate AR-models by threshold accepting
    • Winker, P.: Identification of multivariate AR-models by threshold accepting. Comput. Stat. Data Anal. 20, 295-307 (1995).
    • (1995) Comput. Stat. Data Anal , vol.20 , pp. 295-307
    • Winker, P.1
  • 56
    • 0031447220 scopus 로고    scopus 로고
    • Dynamic weighting in Monte Carlo and optimization
    • USA
    • Wong, W. H., Liang, F.: Dynamic weighting in Monte Carlo and optimization. Proc. Natl. Acad. Sci. USA 94, 14220-14224 (1997).
    • (1997) Proc. Natl. Acad. Sci , vol.94 , pp. 14220-14224
    • Wong, W.H.1    Liang, F.2
  • 57
    • 0037185691 scopus 로고    scopus 로고
    • Using genetic algorithms to parameters (d,r) estimation for threshold autoregressive models
    • Wu, B., Chang, C.-L.: Using genetic algorithms to parameters (d, r) estimation for threshold autoregressive models. Comput. Stat. Data Anal. 38, 315-330 (2002).
    • (2002) Comput. Stat. Data Anal , vol.38 , pp. 315-330
    • Wu, B.1    Chang, C.-L.2
  • 58
    • 84882537412 scopus 로고    scopus 로고
    • Stochastic approximation algorithms for estimation of spatial mixed models
    • S. Y. Lee (Ed.), Amsterdam: Elsevier
    • Zhu, H. T., Liang, F., Gu, M., Peterson, B.: Stochastic approximation algorithms for estimation of spatial mixed models. In: Lee, S. Y. (ed.) Handbook of Computing and Statistics with Applications, vol. 1, pp. 399-421. Elsevier, Amsterdam (2007).
    • (2007) Handbook of Computing and Statistics with Applications , vol.1 , pp. 399-421
    • Zhu, H.T.1    Liang, F.2    Gu, M.3    Peterson, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.