메뉴 건너뛰기




Volumn 6634 LNAI, Issue PART 1, 2011, Pages 225-236

An effective density-based hierarchical clustering technique to identify coherent patterns from gene expression data

Author keywords

coherent patterns; Maximal space cluster; p value; reduced space cluster; z score

Indexed keywords

DATA MINING; GENE EXPRESSION; TREES (MATHEMATICS);

EID: 79957940909     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-20841-6_19     Document Type: Conference Paper
Times cited : (4)

References (30)
  • 6
    • 84942597099 scopus 로고    scopus 로고
    • DHC: A density-based hierarchical clustering method for time series gene expression data
    • Jiang, D., Pei, J., Zhang, A.: DHC: a density-based hierarchical clustering method for time series gene expression data. In: Proc. of BIBE, Bethesda, Maryland, p. 393 (2003)
    • (2003) Proc. of BIBE, Bethesda, Maryland , pp. 393
    • Jiang, D.1    Pei, J.2    Zhang, A.3
  • 9
    • 0032729435 scopus 로고    scopus 로고
    • Exploring expression data: Identication and analysis of co-expressed genes
    • Heyer, L., Kruglyak, S., Yooseph, S.: Exploring expression data: identication and analysis of co-expressed genes. Genome Research 9, 1102-1115 (1999)
    • (1999) Genome Research , vol.9 , pp. 1102-1115
    • Heyer, L.1    Kruglyak, S.2    Yooseph, S.3
  • 10
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
    • Tamayo, P., Slonim, D., Mesirov, J., et al.: Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc. of National Academy of Sciences 96(6), 2907-2912 (1999)
    • (1999) Proc. of National Academy of Sciences , vol.96 , Issue.6 , pp. 2907-2912
    • Tamayo, P.1    Slonim, D.2    Mesirov, J.3
  • 11
    • 0031042985 scopus 로고    scopus 로고
    • Phylogenetic reconstruction using an unsupervised neural network that adopts the topology of a phylogenetic tree
    • Dopazo, J., Carazo, J.M.: Phylogenetic reconstruction using an unsupervised neural network that adopts the topology of a phylogenetic tree. Journal of Molecular Evolution 44, 226-233 (1997)
    • (1997) Journal of Molecular Evolution , vol.44 , pp. 226-233
    • Dopazo, J.1    Carazo, J.M.2
  • 12
    • 44349106021 scopus 로고    scopus 로고
    • Divisive correlation clustering algorithm (DCCA) for grouping of genes: Detecting varying patterns in expression profiles
    • Bhattacharya, A., De, R.: Divisive correlation clustering algorithm (DCCA) for grouping of genes: detecting varying patterns in expression profiles. Bioinformatics 24(11), 1359-1366 (2008)
    • (2008) Bioinformatics , vol.24 , Issue.11 , pp. 1359-1366
    • Bhattacharya, A.1    De, R.2
  • 13
    • 8844269075 scopus 로고    scopus 로고
    • A dynamically growing self-organizing tree (DGSOT) for hierarchical clustering gene expression profiles
    • Luo, F., Khan, L., Bastani, F., et al.: A dynamically growing self-organizing tree (DGSOT) for hierarchical clustering gene expression profiles. Bioinformatics 20(16), 2605-2617 (2004)
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2605-2617
    • Luo, F.1    Khan, L.2    Bastani, F.3
  • 14
    • 0037712008 scopus 로고    scopus 로고
    • Performance assessment of kernel density clustering for gene expression profile data
    • Shu, G., Zeng, B., Chen, Y.P., Smith, O.H.: Performance assessment of kernel density clustering for gene expression profile data. Comparative and Functional Genomics 4, 287-299 (2003)
    • (2003) Comparative and Functional Genomics , vol.4 , pp. 287-299
    • Shu, G.1    Zeng, B.2    Chen, Y.P.3    Smith, O.H.4
  • 15
    • 79957964795 scopus 로고    scopus 로고
    • Clustering gene expression data using a regulation based density clustering
    • Das, R., Bhattacharyya, D.K., Kalita, J.K.: Clustering gene expression data using a regulation based density clustering. IJRTE 2(1-6), 76-78 (2009)
    • (2009) IJRTE , vol.2 , Issue.1-6 , pp. 76-78
    • Das, R.1    Bhattacharyya, D.K.2    Kalita, J.K.3
  • 16
    • 79957940255 scopus 로고    scopus 로고
    • Clustering gene expression data using an effective dissimilarity measure
    • Das, R., Bhattacharyya, D.K., Kalita, J.K.: Clustering gene expression data using an effective dissimilarity measure. IJCB (Special Issue) 1(1), 55-68 (2010)
    • (2010) IJCB (Special Issue) , vol.1 , Issue.1 , pp. 55-68
    • Das, R.1    Bhattacharyya, D.K.2    Kalita, J.K.3
  • 17
    • 0015680655 scopus 로고
    • Clustering using a similarity measure based on shared nearest neighbors
    • Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared nearest neighbors. IEEE Transactions on Computers 11 (1973)
    • (1973) IEEE Transactions on Computers , vol.11
    • Jarvis, R.A.1    Patrick, E.A.2
  • 18
    • 0035108235 scopus 로고    scopus 로고
    • A hierarchical unsupervised growing neural network for clustering gene expression patterns
    • Herrero, J., Valencia, A., Dopazo, J.: A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17, 126-136 (2001)
    • (2001) Bioinformatics , vol.17 , pp. 126-136
    • Herrero, J.1    Valencia, A.2    Dopazo, J.3
  • 21
    • 67649171012 scopus 로고    scopus 로고
    • A new approach for clustering gene expression time series data
    • Das, R., Kalita, J.K., Bhattacharyya, D.K.: A new approach for clustering gene expression time series data. IJBRA 5(3), 310-328 (2009)
    • (2009) IJBRA , vol.5 , Issue.3 , pp. 310-328
    • Das, R.1    Kalita, J.K.2    Bhattacharyya, D.K.3
  • 23
    • 36448965202 scopus 로고    scopus 로고
    • An improved algorithm for clustering gene expression data
    • Bandyopadhyay, S., Mukhopadhyay, A., Maulik, U.: An improved algorithm for clustering gene expression data. Bioinformatics 23(21), 2859-2865 (2007)
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2859-2865
    • Bandyopadhyay, S.1    Mukhopadhyay, A.2    Maulik, U.3
  • 24
    • 62949240361 scopus 로고    scopus 로고
    • Combining pareto-optimal clusters using supervised learning for identifying co-expressed genes
    • Maulik, U., Mukhopadhyay, A., Bandyopadhyay, S.: Combining pareto-optimal clusters using supervised learning for identifying co-expressed genes. BMC Bioinformatics 10(27) (2009)
    • (2009) BMC Bioinformatics , vol.10 , pp. 27
    • Maulik, U.1    Mukhopadhyay, A.2    Bandyopadhyay, S.3
  • 25
    • 77954247705 scopus 로고    scopus 로고
    • CLIC: Clustering analysis of large microarray datasets with individual dimension-based clustering
    • Yun, T., Hwang, T., Cha, K., et al.: CLIC: clustering analysis of large microarray datasets with individual dimension-based clustering. Nucleic Acids Research 38, W246-W253 (2010)
    • (2010) Nucleic Acids Research , vol.38
    • Yun, T.1    Hwang, T.2    Cha, K.3
  • 26
    • 0032112293 scopus 로고    scopus 로고
    • A genome-wide transcriptional analysis of the mitotic cell cycle
    • Cho, R.J., Campbell, M., Winzeler, E., et al.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2(1), 65-73 (1998)
    • (1998) Molecular Cell , vol.2 , Issue.1 , pp. 65-73
    • Cho, R.J.1    Campbell, M.2    Winzeler, E.3
  • 27
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DeRisi, J.L., Iyer, V.R., Brown, P.O.: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680-686 (1997)
    • (1997) Science , vol.278 , pp. 680-686
    • DeRisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 28
    • 0032903908 scopus 로고    scopus 로고
    • The transcriptional program in the response of the human fibroblasts to serum
    • Iyer, V.R., Eisen, M.B., Ross, D.T., et al.: The transcriptional program in the response of the human fibroblasts to serum. Science 283, 83-87 (1999)
    • (1999) Science , vol.283 , pp. 83-87
    • Iyer, V.R.1    Eisen, M.B.2    Ross, D.T.3
  • 29
    • 0036798238 scopus 로고    scopus 로고
    • Judging the quality of gene expression based clustering methods using gene annotation
    • Gibbons, F., Roth, F.: Judging the quality of gene expression based clustering methods using gene annotation. Genome Research 12, 1574-1581 (2002)
    • (2002) Genome Research , vol.12 , pp. 1574-1581
    • Gibbons, F.1    Roth, F.2
  • 30
    • 0347513219 scopus 로고    scopus 로고
    • Characterizing gene sets with funcassociate
    • Berriz, F.G., et al.: Characterizing gene sets with funcassociate. Bioinformatics 19, 2502-2504 (2003)
    • (2003) Bioinformatics , vol.19 , pp. 2502-2504
    • Berriz, F.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.