메뉴 건너뛰기




Volumn 4, Issue 3, 2003, Pages 287-299

Performance assessment of kernel density clustering for gene expression profile data

Author keywords

Clustering analysis; Expression profile; Gene expression; Kernel density; Noisy data; Pseudo F; Pseudo t test; r2; Rand Index; Robustness; Smoothing; Unsupervised learning

Indexed keywords

ARTICLE; CLUSTER ANALYSIS; CONTROLLED STUDY; GENE CLUSTER; GENE EXPRESSION PROFILING; GENE ISOLATION; GENETIC MODEL; INTERMETHOD COMPARISON; MATHEMATICAL COMPUTING; MULTIVARIATE ANALYSIS; PRIORITY JOURNAL; SIGNAL NOISE RATIO; SIMULATION;

EID: 0037712008     PISSN: 15316912     EISSN: None     Source Type: Journal    
DOI: 10.1002/cfg.290     Document Type: Article
Times cited : (32)

References (40)
  • 1
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield JD, Raftery AE. 1993. Model-based Gaussian and non-Gaussian clustering. Biometrics 49: 803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 3
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data using support vector machines
    • Brown MPS, Grundy WN, Lin D, et al. 2000. Knowledge-based analysis of microarray gene expression data using support vector machines. Proc Natl Acad Sci USA 97: 262-267.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 262-267
    • Brown, M.P.S.1    Grundy, W.N.2    Lin, D.3
  • 4
    • 84972893020 scopus 로고
    • A dendrite method for cluster analysis
    • Calinski T, Harabasz J. 1974. A dendrite method for cluster analysis. Commun Statist 3: 1-27.
    • (1974) Commun. Statist. , vol.3 , pp. 1-27
    • Calinski, T.1    Harabasz, J.2
  • 6
    • 0036080361 scopus 로고    scopus 로고
    • Adaptive quality-based clustering of gene expression profiles
    • De Smet F, Mathys J, Marchal K, et al. 2002. Adaptive quality-based clustering of gene expression profiles. Bioinformatics 18: 735-746.
    • (2002) Bioinformatics , vol.18 , pp. 735-746
    • De Smet, F.1    Mathys, J.2    Marchal, K.3
  • 7
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DeRisi JL, Vishwanath RL, Brown PO. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680-686.
    • (1997) Science , vol.278 , pp. 680-686
    • DeRisi, J.L.1    Vishwanath, R.L.2    Brown, P.O.3
  • 9
    • 22844453564 scopus 로고    scopus 로고
    • Mclust: Software for model-based cluster analysis
    • Fraley C, Raftery AE. 1999. Mclust: software for model-based cluster analysis. J Classif 16: 297-306.
    • (1999) J. Classif. , vol.16 , pp. 297-306
    • Fraley, C.1    Raftery, A.E.2
  • 10
    • 0036188158 scopus 로고    scopus 로고
    • Mixture modelling of gene expression data from microarray experiments
    • Ghosh D, Chinnaiyan AM. 2002. Mixture modelling of gene expression data from microarray experiments. Bioinformatics 18: 275-286.
    • (2002) Bioinformatics , vol.18 , pp. 275-286
    • Ghosh, D.1    Chinnaiyan, A.M.2
  • 11
    • 0015572161 scopus 로고
    • An algorithm for nonsupervised pattern classification
    • SMC-3
    • Gitman I. 1973. An algorithm for nonsupervised pattern classification. IEEE Trans Syst Man Cybernet SMC-3: 66-74.
    • (1973) IEEE Trans. Syst. Man. Cybernet. , pp. 66-74
    • Gitman, I.1
  • 12
    • 0004241258 scopus 로고    scopus 로고
    • 2nd edn. Chapman & Hall/CRC: London
    • Gordon AD. 1999. Classification, 2nd edn. Chapman & Hall/CRC: London.
    • (1999) Classification
    • Gordon, A.D.1
  • 15
    • 0035108235 scopus 로고    scopus 로고
    • A hierarchical unsupervised growing neural network for clustering gene expression patterns
    • Herrero J, Valencia A, Dopazo J. 2001. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17: 126-136.
    • (2001) Bioinformatics , vol.17 , pp. 126-136
    • Herrero, J.1    Valencia, A.2    Dopazo, J.3
  • 16
    • 0032729435 scopus 로고    scopus 로고
    • Exploring expression data: Identification and analysis of co-expressed genes
    • Heyer LJ, Kruglyak S, Yooseph S. 1999. Exploring expression data: identification and analysis of co-expressed genes. Genome Res 9: 1102-1115.
    • (1999) Genome Res. , vol.9 , pp. 1102-1115
    • Heyer, L.J.1    Kruglyak, S.2    Yooseph, S.3
  • 17
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert L, Arabie P. 1985. Comparing partitions. J Classif 2: 193-218.
    • (1985) J. Classif. , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 18
    • 0016784903 scopus 로고
    • A Monte Carlo comparison of six clustering procedures
    • Kuiper FK, Fisher L. 1975. A Monte Carlo comparison of six clustering procedures. Biometrics 31: 777-783.
    • (1975) Biometrics , vol.31 , pp. 777-783
    • Kuiper, F.K.1    Fisher, L.2
  • 19
    • 0038757745 scopus 로고
    • Technical Report 78-1. Behavioral Research Institute: 2305 Canyon Blvd., Boulder, CO 80 302
    • Huizinga DH. 1978. A Natural or Mode Seeking Cluster Analysis Algorithm. Technical Report 78-1. Behavioral Research Institute: 2305 Canyon Blvd., Boulder, CO 80 302.
    • (1978) A Natural or Mode Seeking Cluster Analysis Algorithm
    • Huizinga, D.H.1
  • 20
    • 0015300373 scopus 로고
    • A non-parametric valley-seeking technique for cluster analysis
    • Koontz WLG, Fukunaga K. 1972. A non-parametric valley-seeking technique for cluster analysis. IEEE Trans Comput C21: 171-178.
    • (1972) IEEE Trans. Comput. , vol.C-21 , pp. 171-178
    • Koontz, W.L.G.1    Fukunaga, K.2
  • 21
    • 0036583197 scopus 로고    scopus 로고
    • DNA array profiling of gene expression changes during maize embryo development
    • Lee J, Williams ME, Tingey SV, Rafalski JA. 2002. DNA array profiling of gene expression changes during maize embryo development. Funct Integr Genom 2: 13-27.
    • (2002) Funct. Integr. Genom. , vol.2 , pp. 13-27
    • Lee, J.1    Williams, M.E.2    Tingey, S.V.3    Rafalski, J.A.4
  • 22
    • 0034730124 scopus 로고    scopus 로고
    • Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridization
    • Lee M-LT, Kuo FC, Whitmore GA, Sklar J. 2000. Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridization. Proc Natl Acad Sci USA 97: 9834-9839.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 9834-9839
    • Lee, M.-L.T.1    Kuo, F.C.2    Whitmore, G.A.3    Sklar, J.4
  • 23
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method
    • Li L, Weinberg CR, Darden TA, Pedersen LG. 2001. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17: 1131-1142.
    • (2001) Bioinformatics , vol.17 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 24
    • 0034659898 scopus 로고    scopus 로고
    • Genomics, gene expression and DNA arrays
    • Lockhart DJ, Winzeler EA. 2000. Genomics, gene expression and DNA arrays. Nature 405: 827-836.
    • (2000) Nature , vol.405 , pp. 827-836
    • Lockhart, D.J.1    Winzeler, E.A.2
  • 25
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan GW, Cooper MC. 1985. An examination of procedures for determining the number of clusters in a data set. Psychometrika 50: 159-179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 26
    • 84948872101 scopus 로고
    • A study of the comparability of external criteria for hierarchical cluster analysis
    • Milligan GW, Cooper MC. 1986. A study of the comparability of external criteria for hierarchical cluster analysis. Multivar Behav Res 21: 441-458.
    • (1986) Multivar. Behav. Res. , vol.21 , pp. 441-458
    • Milligan, G.W.1    Cooper, M.C.2
  • 28
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand WM. 1971. Objective criteria for the evaluation of clustering methods. J Am Statist Assoc 66: 846-850.
    • (1971) J. Am. Statist. Assoc. , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 29
    • 0038419710 scopus 로고
    • Professional Release 1, Copyright © Insightful Corp
    • S-PLUS 6.0 for Windows, Professional Release 1, Copyright © 1988-2001. Insightful Corp.
    • (1988) S-PLUS 6.0 for Windows
  • 30
    • 0004282518 scopus 로고    scopus 로고
    • Version 8.0, SAS Institute Inc: Cary, NC
    • SAS/STAT User's Guide, Version 8.0, 1999. SAS Institute Inc: Cary, NC.
    • (1999) SAS/STAT User's Guide
  • 32
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. 1978. Estimating the dimension of a model. Ann Stat 6: 461-464.
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 35
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
    • Tamayo P, Slonim D, Mesirov J, et al. 1999. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96: 2907-2912.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 2907-2912
    • Tamayo, P.1    Slonim, D.2    Mesirov, J.3
  • 37
    • 0035875553 scopus 로고    scopus 로고
    • Issues in cDNA microarray analysis: Quality filtering, channel normalization, models of variations and assessment of gene effects
    • Tseng GC, Oh M-K, Rohlin L, Liao JC, Wong WH. 2001. Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids Res 29: 2549-2557.
    • (2001) Nucleic Acids Res. , vol.29 , pp. 2549-2557
    • Tseng, G.C.1    Oh, M.-K.2    Rohlin, L.3    Liao, J.C.4    Wong, W.H.5
  • 38
    • 0037743645 scopus 로고
    • Using the Kth nearest neighbor clustering procedure to determine the number of subpopulations
    • American Statistical Association: 1982
    • Wong MA, Schaack C. 1982. Using the Kth nearest neighbor clustering procedure to determine the number of subpopulations. Proceedings of the Statistical Computing Section. American Statistical Association: 1982; 40-48.
    • (1982) Proceedings of the Statistical Computing Section , pp. 40-48
    • Wong, M.A.1    Schaack, C.2
  • 39
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL. 2001. Model-based clustering and data transformations for gene expression data. Bioinformatics 17: 977-987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3    Raftery, A.E.4    Ruzzo, W.L.5
  • 40
    • 0004252445 scopus 로고    scopus 로고
    • 4th edn. Prentice Hall: Upper Saddle River, NJ
    • Zar JH. 1999. Biostatistical Analysis, 4th edn. Prentice Hall: Upper Saddle River, NJ.
    • (1999) Biostatistical Analysis
    • Zar, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.