메뉴 건너뛰기




Volumn 24, Issue 11, 2008, Pages 1359-1366

Divisive correlation clustering algorithm (DCCA) for grouping of genes: Detecting varying patterns in expression profiles

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; RIBONUCLEOPROTEIN;

EID: 44349106021     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/btn133     Document Type: Article
Times cited : (59)

References (36)
  • 1
    • 0037774102 scopus 로고    scopus 로고
    • Consensus algorithms for the generation of all maximal bicliques
    • Alexe,G. et al. (2002) Consensus algorithms for the generation of all maximal bicliques. In Technical Report TF-DIMACS.
    • (2002) Technical Report TF-DIMACS
    • Alexe, G.1
  • 3
    • 0034069495 scopus 로고    scopus 로고
    • Tool for the unification of biology. The gene ontology consortium
    • Asnburner,M. et al. (2000) Tool for the unification of biology. The gene ontology consortium. Nat. Genet., 25, 25-29.
    • (2000) Nat. Genet , vol.25 , pp. 25-29
    • Asnburner, M.1
  • 4
  • 6
    • 0347513219 scopus 로고    scopus 로고
    • Characterizing gene sets with funcassociate
    • Berriz,F.G. et al. (2003) Characterizing gene sets with funcassociate. Bioinformatics, 19, 2502-2504.
    • (2003) Bioinformatics , vol.19 , pp. 2502-2504
    • Berriz, F.G.1
  • 8
    • 0021583718 scopus 로고
    • FCM: Fuzzy c-means algorithm
    • Bezdek,J.C. et al. (1984) FCM: Fuzzy c-means algorithm. Comput. Geosci, 10, 191-203.
    • (1984) Comput. Geosci , vol.10 , pp. 191-203
    • Bezdek, J.C.1
  • 12
    • 0032112293 scopus 로고    scopus 로고
    • A genome-wide, transcriptional analysis of the mitotic cell cycle
    • Cho, R.J. et al. (1998) A genome-wide, transcriptional analysis of the mitotic cell cycle. Mol. Cell, 2, 65-73.
    • (1998) Mol. Cell , vol.2 , pp. 65-73
    • Cho, R.J.1
  • 15
    • 33746868385 scopus 로고    scopus 로고
    • Correlation clustering in general weighted graphs
    • Demaine,E.D. et al. (2006) Correlation clustering in general weighted graphs. Theoret. Comput. Sci. 361, 172-187.
    • (2006) Theoret. Comput. Sci , vol.361 , pp. 172-187
    • Demaine, E.D.1
  • 16
    • 17944394324 scopus 로고    scopus 로고
    • Fuzzy c-means method for clustering microarray data
    • Dembele,D. and Kastner,P. (2003) Fuzzy c-means method for clustering microarray data. Bioinformatics, 19, 973-980.
    • (2003) Bioinformatics , vol.19 , pp. 973-980
    • Dembele, D.1    Kastner, P.2
  • 17
    • 0015644825 scopus 로고
    • A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters
    • Dunn,J.C. (1973) A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybernet, 3, 32-57.
    • (1973) J. Cybernet , vol.3 , pp. 32-57
    • Dunn, J.C.1
  • 18
    • 0034710876 scopus 로고    scopus 로고
    • Coupled two-way clustering analysis of gene microarray data
    • Cietz,G. et al. (2000) Coupled two-way clustering analysis of gene microarray data. Proc. Natl Acad Sci USA, 12079-12084.
    • (2000) Proc. Natl Acad Sci USA , pp. 12079-12084
    • Cietz, G.1
  • 19
    • 0036798238 scopus 로고    scopus 로고
    • Judging the quality of gene expression-based clustering methods using gene annotation
    • Gibbons,F. and Roth,F. (2002) Judging the quality of gene expression-based clustering methods using gene annotation. Genome Res. 12, 1574-1581.
    • (2002) Genome Res , vol.12 , pp. 1574-1581
    • Gibbons, F.1    Roth, F.2
  • 20
    • 0018057468 scopus 로고
    • Fuzzy clustering with a fuzzy covarience matrix
    • San Diego, California, pp
    • Gustafson,E.E. and Kessel,W.C. (1979) Fuzzy clustering with a fuzzy covarience matrix. In Proceedings of the IEEE CDC. San Diego, California, pp. 761-766.
    • (1979) Proceedings of the IEEE CDC , pp. 761-766
    • Gustafson, E.E.1    Kessel, W.C.2
  • 22
    • 4544339167 scopus 로고    scopus 로고
    • Defining transcription modules using large-scale gene expression data
    • Ihmels,J. et al. (2004) Defining transcription modules using large-scale gene expression data. Bioinformatics, 20, 1993-2003.
    • (2004) Bioinformatics , vol.20 , pp. 1993-2003
    • Ihmels, J.1
  • 23
    • 18444386817 scopus 로고    scopus 로고
    • Saccharomyces genome database
    • Issel-Tarver,L. et al. (2002) Saccharomyces genome database. Methods Enzymol, 350, 329-346.
    • (2002) Methods Enzymol , vol.350 , pp. 329-346
    • Issel-Tarver, L.1
  • 25
    • 18744364197 scopus 로고    scopus 로고
    • Detecting clusters of different geometrical shapes in microarray gene expression data
    • Kim,D.W. et al. (2005) Detecting clusters of different geometrical shapes in microarray gene expression data. Bioinformatics, 21 1927-1934.
    • (2005) Bioinformatics , vol.21 , pp. 1927-1934
    • Kim, D.W.1
  • 26
    • 0037810449 scopus 로고    scopus 로고
    • Subsystem identification through dimensionality reduction of large-scale gene expression data
    • Kim,P.M. and Tidor,B. (2003) Subsystem identification through dimensionality reduction of large-scale gene expression data. Genome Res., 13, 1706-1718.
    • (2003) Genome Res , vol.13 , pp. 1706-1718
    • Kim, P.M.1    Tidor, B.2
  • 27
    • 0037399130 scopus 로고    scopus 로고
    • Spectral biclustering of microarray cancer data: Co-clustering genes and conditions
    • Kluger,Y. et al. (2003) Spectral biclustering of microarray cancer data: Co-clustering genes and conditions. Genome Res., 703-716.
    • (2003) Genome Res , pp. 703-716
    • Kluger, Y.1
  • 28
    • 0035014159 scopus 로고    scopus 로고
    • Analysis of temporal gene expression profiles:cLustering by simulated annealing and determining the optimal number of clusters
    • Lukashin,A.V. and Fuchs,R. (2001) Analysis of temporal gene expression profiles:cLustering by simulated annealing and determining the optimal number of clusters. Bioinformatics, 17, 405-414.
    • (2001) Bioinformatics , vol.17 , pp. 405-414
    • Lukashin, A.V.1    Fuchs, R.2
  • 31
    • 33646137384 scopus 로고    scopus 로고
    • A systematic comparison and evaluation of biclustering methods for gene expression data
    • Prelic,A. et al. (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics, 22, 1122-1129.
    • (2006) Bioinformatics , vol.22 , pp. 1122-1129
    • Prelic, A.1
  • 33
    • 0242475337 scopus 로고    scopus 로고
    • Kernel hierarchical gene clustering from microarray expression data
    • Qin. J. et al. (2003) Kernel hierarchical gene clustering from microarray expression data. Bioinformatics, 19, 2097-2104.
    • (2003) Bioinformatics , vol.19 , pp. 2097-2104
    • Qin, J.1
  • 34
    • 0141506116 scopus 로고    scopus 로고
    • Click and expander: A system for clustering and visualizing gene expression data
    • Sharan,R. et al. (2003) Click and expander: A system for clustering and visualizing gene expression data. Bioinformatics, 19, 1787-1799.
    • (2003) Bioinformatics , vol.19 , pp. 1787-1799
    • Sharan, R.1
  • 35
    • 11244306358 scopus 로고    scopus 로고
    • Discovering statistically significant biclusters in gene expression data
    • Tanay,A. et al. (2002) Discovering statistically significant biclusters in gene expression data. Bioinformatics, S136-S144.
    • (2002) Bioinformatics
    • Tanay, A.1
  • 36
    • 0035999974 scopus 로고    scopus 로고
    • Clustering gene, expression data using a graph-theoretic approach: An application of minmum spanning trees
    • Xu, Y. et al. (2002) Clustering gene, expression data using a graph-theoretic approach: An application of minmum spanning trees. Bioinformatics, 18, 536-545.
    • (2002) Bioinformatics , vol.18 , pp. 536-545
    • Xu, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.