메뉴 건너뛰기




Volumn 59, Issue 2, 2011, Pages 467-479

Support vector machines with the ramp loss and the hard margin loss

Author keywords

Integer applications; Pattern analysis; Programming; Quadratic integer programming; Statistics; Support vector machines

Indexed keywords

COMPUTATIONAL PERFORMANCE; COMPUTATIONAL STUDIES; CONSISTENT ESTIMATORS; INTEGER APPLICATIONS; INTEGER PROGRAMMING FORMULATIONS; KERNEL FUNCTION; LINEAR KERNEL; LOSS FUNCTIONS; MAXIMUM ERROR; MIXED-INTEGER PROGRAMS; NP-HARD; OPTIMALITY; PATTERN ANALYSIS; PROGRAMMING; QUADRATIC INTEGER PROGRAMMING; QUADRATIC PROGRAMS; REAL WORLD DATA; SOLUTION METHODS;

EID: 79957523845     PISSN: 0030364X     EISSN: 15265463     Source Type: Journal    
DOI: 10.1287/opre.1100.0854     Document Type: Article
Times cited : (147)

References (42)
  • 2
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • Bartlett, P., S. Mendelson. 2002. Rademacher and Gaussian complexities: Risk bounds and structural results. J. Machine Learn. Res. 3 463-482.
    • (2002) J. Machine Learn. Res. , vol.3 , pp. 463-482
    • Bartlett, P.1    Mendelson, S.2
  • 3
    • 84898958346 scopus 로고    scopus 로고
    • Semi-supervised support vector machines
    • Neural Information Processing Systems Foundation Boston, MA
    • Bennett, K. P., A. Dimiriz. 1998. Semi-supervised support vector machines. Proc. Neural Inform. Processing Systems. Neural Information Processing Systems Foundation, Boston, MA, 368-374.
    • (1998) Proc. Neural Inform. Processing Systems , pp. 368-374
    • Bennett, K.P.1    Dimiriz, A.2
  • 4
    • 34247479715 scopus 로고    scopus 로고
    • Classification and regression via integer optimization
    • DOI 10.1287/opre.1060.0360
    • Bertsimas, D., R. Shioda. 2007. Classification and regression via integer optimization. Oper. Res. 55 252-271. (Pubitemid 46663460)
    • (2007) Operations Research , vol.55 , Issue.2 , pp. 252-271
    • Bertsimas, D.1    Shioda, R.2
  • 5
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman, L. 1998. Arcing classifiers. Ann. Statist. 26 801-824.
    • (1998) Ann. Statist. , vol.26 , pp. 801-824
    • Breiman, L.1
  • 7
    • 76649136507 scopus 로고    scopus 로고
    • Analysis of the consistency of a mixed integer programming-based multi-category constrained discriminant model
    • Brooks, J. P., E. K. Lee. 2010. Analysis of the consistency of a mixed integer programming-based multi-category constrained discriminant model. Ann. Oper. Res. 174(1) 147-168.
    • (2010) Ann. Oper. Res , vol.174 , Issue.1 , pp. 147-168
    • Brooks, J.P.1    Lee, E.K.2
  • 8
    • 79957439968 scopus 로고    scopus 로고
    • Discrete support vector machines
    • Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada
    • Brooks, J. P., R. Shioda, A. Spencer. 2007. Discrete support vector machines. Technical Report CandO Research Report: CORR 2007-12, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada.
    • (2007) Technical Report CandO Research Report: CORR 2007-12
    • Brooks, J.P.1    Shioda, R.2    Spencer, A.3
  • 11
    • 18244390064 scopus 로고    scopus 로고
    • On robustness properties of convex risk minimization methods for pattern recognition
    • Christmann, A., I. Steinwart. 2004. On robustness properties of convex risk minimization methods for pattern recognition. J. Machine Learn. Res. 5 1007-1034.
    • (2004) J. Machine Learn. Res. , vol.5 , pp. 1007-1034
    • Christmann, A.1    Steinwart, I.2
  • 13
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., V. Vapnik. 1995. Support-vector networks. Machine Learning 20(3) 273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 14
    • 0014380444 scopus 로고
    • Rates of convergence for nearest neighbor procedures
    • Honolulu
    • Cover, T. 1968. Rates of convergence for nearest neighbor procedures. Proc. Hawaii Internat. Conf. System Sci., Honolulu, 413-415.
    • (1968) Proc. Hawaii Internat. Conf. System Sci. , pp. 413-415
    • Cover, T.1
  • 17
    • 0031501337 scopus 로고    scopus 로고
    • Constrained discriminant analysis via 0/1 mixed integer programming
    • Gallagher, R. J., E. K. Lee, D. A. Patterson. 1997. Constrained discriminant analysis via 0/1 mixed integer programming. Ann. Oper. Res. 74 65-88.
    • (1997) Ann. Oper. Res. , vol.74 , pp. 65-88
    • Gallagher, R.J.1    Lee, E.K.2    Patterson, D.A.3
  • 19
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf, C. Burges, A. Smola, eds, B. MIT Press, Cambridge, MA
    • Joachims, T. 1999. Making large-scale SVM learning practical. B. Schölkopf, C. Burges, A. Smola, eds. Advances in Kernel Methods-Support Vector Learning, B. MIT Press, Cambridge, MA.
    • (1999) Advances in Kernel Methods-Support Vector Learning
    • Joachims, T.1
  • 21
    • 84985824432 scopus 로고
    • Minimizing misclassifications in linear discriminant analysis
    • Koehler, G. J., S. S. Erenguc. 1990. Minimizing misclassifications in linear discriminant analysis. Decision Sci. 21 63-85.
    • (1990) Decision Sci. , vol.21 , pp. 63-85
    • Koehler, G.J.1    Erenguc, S.S.2
  • 22
    • 15944365213 scopus 로고    scopus 로고
    • Multicategory Ψ-Learning and support vector machine: Computational tools
    • DOI 10.1198/106186005X37238
    • Liu, Y., X. Shen, H. Doss. 2005. Multicategory .-learning and support vector machine: Computational tools. J. Comput. Graphical Statist. 14 219-236. (Pubitemid 40447834)
    • (2005) Journal of Computational and Graphical Statistics , vol.14 , Issue.1 , pp. 219-236
    • Liu, Y.1    Shen, X.2    Doss, H.3
  • 23
    • 0000963583 scopus 로고
    • Linear and nonlinear separation of patterns by linear programming
    • Mangasarian, O. L. 1965. Linear and nonlinear separation of patterns by linear programming. Oper. Res. 13 444-452.
    • (1965) Oper. Res. , vol.13 , pp. 444-452
    • Mangasarian, O.L.1
  • 24
    • 84914951454 scopus 로고
    • Multi-surface method of pattern separation
    • Mangasarian, O. L. 1968. Multi-surface method of pattern separation. IEEE Trans. Inform. Theory 14 801-807.
    • (1968) IEEE Trans. Inform. Theory , vol.14 , pp. 801-807
    • Mangasarian, O.L.1
  • 25
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • Mangasarian, O. L., W. H. Wolberg. 1990. Cancer diagnosis via linear programming. SIAM News 23 1-18.
    • (1990) SIAMi News , vol.23 , pp. 1-18
    • Mangasarian, O.L.1    Wolberg, W.H.2
  • 28
    • 1642263475 scopus 로고    scopus 로고
    • Multivariate classification trees based on minimum features discrete support vector machines
    • Orsenigo, C., C. Vercellis. 2003. Multivariate classification trees based on minimum features discrete support vector machines. IMA J. Management Math. 14 221-234.
    • (2003) IMA J. Management Math. , vol.14 , pp. 221-234
    • Orsenigo, C.1    Vercellis, C.2
  • 30
    • 37249049442 scopus 로고    scopus 로고
    • Softening the margin in discrete SVM Lecture Notes Artificial Intelligence: Adv
    • Orsenigo, C., C. Vercellis. 2007b. Softening the margin in discrete SVM. Lecture Notes Artificial Intelligence: Adv. Data Mining 4597 49-62.
    • (2007) Data Mining , vol.4597 , pp. 49-62
    • Orsenigo, C.1    Vercellis, C.2
  • 32
    • 70149113077 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team. 2009. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
    • (2009) R: A Language and Environment for Statistical Computing
  • 36
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • Steinwart, I. 2001. On the influence of the kernel on the consistency of support vector machines. J. Machine Learn. Res. 2 67-93.
    • (2001) J. Machine Learn. Res. , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 37
    • 0036749277 scopus 로고    scopus 로고
    • Support vector machines are universally consistent
    • Steinwart, I. 2002. Support vector machines are universally consistent. J. Complexity 18 768-791.
    • (2002) J. Complexity , vol.18 , pp. 768-791
    • Steinwart, I.1
  • 38
    • 12444265838 scopus 로고    scopus 로고
    • Consistency of support vector machines and other regularized kernel classifiers
    • DOI 10.1109/TIT.2004.839514
    • Steinwart, I. 2005. Consistency of support vector machines and other regularized kernel classifiers. IEEE Trans. Inform. Theory 51 128-142. (Pubitemid 40145991)
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.1 , pp. 128-142
    • Steinwart, I.1
  • 42
    • 33750691986 scopus 로고    scopus 로고
    • Robust support vector machine training via convex outlier ablation
    • Association for the Advancement of Artificial Intelligence, Menlo Park, CA
    • Xu, L., K. Crammer, D. Schuurmans. 2006. Robust support vector machine training via convex outlier ablation. Proc. National Conf. Artificial Intelligence (AAAI-06), Association for the Advancement of Artificial Intelligence, Menlo Park, CA.
    • (2006) Proc. National Conf. Artificial Intelligence (AAAI-06)
    • Xu, L.1    Crammer, K.2    Schuurmans, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.