메뉴 건너뛰기




Volumn 55, Issue 2, 2007, Pages 252-271

Classification and regression via integer optimization

Author keywords

Applications; Programming: integer; Statistics: nonparametric

Indexed keywords

COMPUTATIONAL EXPERIMENTATIONS; INTEGER OPTIMIZATION; POLYHEDRAL REGIONS; STATISTICAL PROBLEMS;

EID: 34247479715     PISSN: 0030364X     EISSN: 15265463     Source Type: Journal    
DOI: 10.1287/opre.1060.0360     Document Type: Article
Times cited : (107)

References (23)
  • 2
    • 34247517770 scopus 로고
    • Optimal decision trees. R.P.I
    • Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY
    • Bennett, K. P., J. A. Blue. 1984. Optimal decision trees. R.P.I. Math Report 214, Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY.
    • (1984) Math Report , vol.214
    • Bennett, K.P.1    Blue, J.A.2
  • 3
    • 34247512022 scopus 로고    scopus 로고
    • An algorithm for cardinality constraint quadratic optimization
    • In review
    • Bertsimas, D., R. Shioda. 2004. An algorithm for cardinality constraint quadratic optimization. In review.
    • (2004)
    • Bertsimas, D.1    Shioda, R.2
  • 4
    • 0008633562 scopus 로고    scopus 로고
    • Computational study of families of mixed-integer quadratic programming problems
    • Bienstock, D. 1996. Computational study of families of mixed-integer quadratic programming problems. Math. Programming 74 121-140.
    • (1996) Math. Programming , vol.74 , pp. 121-140
    • Bienstock, D.1
  • 7
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. 1991. Multivariate adaptive regression splines. Ann. Statist. 19(1) 1-67.
    • (1991) Ann. Statist , vol.19 , Issue.1 , pp. 1-67
    • Friedman, J.1
  • 10
    • 34247548324 scopus 로고    scopus 로고
    • Friedman, J. H. 2002. Getting started with MART in R. http://www-stat.stanford.edu/~jhf/r-mart/tutorial/tutorial.pdf.
    • Friedman, J. H. 2002. Getting started with MART in R. http://www-stat.stanford.edu/~jhf/r-mart/tutorial/tutorial.pdf.
  • 12
    • 34247500343 scopus 로고    scopus 로고
    • ILOG CPLEX 7.1 Reference Guide. 2001. ILOG CPLEX Division, Incline Village, NV.
    • ILOG CPLEX 7.1 Reference Guide. 2001. ILOG CPLEX Division, Incline Village, NV.
  • 14
    • 34247544984 scopus 로고    scopus 로고
    • CRUISE User Manual
    • Technical Report 989, Department of Statistics, University of Wisconsin, Madison, WI
    • Kim, H., W. Y. Loh. 2000. CRUISE User Manual. Technical Report 989, Department of Statistics, University of Wisconsin, Madison, WI.
    • (2000)
    • Kim, H.1    Loh, W.Y.2
  • 15
    • 1542573450 scopus 로고    scopus 로고
    • Classification tree with unbiased multiway splits
    • Kim, H., W. Y. Loh. 2001. Classification tree with unbiased multiway splits. J. Amer. Statist. Assoc. 96 598-604.
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 598-604
    • Kim, H.1    Loh, W.Y.2
  • 16
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • Loh, W. Y., Y. Shih. 1997. Split selection methods for classification trees. Statistica Sinica 7 815-840.
    • (1997) Statistica Sinica , vol.7 , pp. 815-840
    • Loh, W.Y.1    Shih, Y.2
  • 17
    • 0000963583 scopus 로고
    • Linear and nonlinear separation of patterns by linear programming
    • Mangasarian, O. L. 1965. Linear and nonlinear separation of patterns by linear programming. Oper. Res. 13(3) 444-452.
    • (1965) Oper. Res , vol.13 , Issue.3 , pp. 444-452
    • Mangasarian, O.L.1
  • 19
    • 67650757105 scopus 로고    scopus 로고
    • guide to the gbm package
    • Ridgeway, G. 2005. Generalized boosted models: A guide to the gbm package. http://i-pensieri.com/gregr/papers/gbm-vignette.pdf.
    • (2005) Generalized boosted models: A
    • Ridgeway, G.1
  • 20
    • 0141734591 scopus 로고    scopus 로고
    • Ph.D. thesis, Electrical Engineering and Comuter Science and Operations Research, Massachusetts Institute of Technology, Cambridge, MA
    • Rifkin, R. 2002. Everything old is new again: A fresh look at historical approaches in machine learning. Ph.D. thesis, Electrical Engineering and Comuter Science and Operations Research, Massachusetts Institute of Technology, Cambridge, MA.
    • (2002) Everything old is new again: A fresh look at historical approaches in machine learning
    • Rifkin, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.