메뉴 건너뛰기




Volumn 24, Issue 6, 2011, Pages 775-784

A 'non-parametric' version of the naive Bayes classifier

Author keywords

Breast cancer; Logistic regression; Naive Bayes; Supervised learning; UCI data sets

Indexed keywords

ALTERNATIVE METHODS; BREAST CANCER; BREAST CANCER DATA; DATA SETS; LOGISTIC REGRESSION; MACHINE-LEARNING; MULTINOMIAL LOGISTIC REGRESSION; NAIVE BAYES; NAIVE BAYES CLASSIFIERS; NON-NORMAL DISTRIBUTION; NON-PARAMETRIC; NOVEL ALGORITHM; STANDARD ALGORITHMS;

EID: 79957522106     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2011.02.014     Document Type: Article
Times cited : (125)

References (35)
  • 1
    • 33847410499 scopus 로고    scopus 로고
    • Kernel-based naive bayes classifier for breast cancer prediction
    • DOI 10.1142/S0218339007002076, PII S0218339007002076
    • J. Nahar, Y.-P. Chen, and S. Ali Kernel-based naive Bayes classifier for breast cancer prediction Journal of Biological System 15 2007 17 25 (Pubitemid 46340530)
    • (2007) Journal of Biological Systems , vol.15 , Issue.1 , pp. 17-25
    • Nahar, J.1    Chen, Y.-P.P.2    Ali, S.3
  • 2
    • 33847166276 scopus 로고    scopus 로고
    • A decision tree-based attribute weighting filter for naive Bayes
    • DOI 10.1016/j.knosys.2006.11.008, PII S0950705106002000, AI 2006
    • M. Hall A decision tree-based attribute weighting filter for naive Bayes Knowledge-Based Systems 20 2007 120 126 (Pubitemid 46282455)
    • (2007) Knowledge-Based Systems , vol.20 , Issue.2 , pp. 120-126
    • Hall, M.1
  • 6
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • ICML
    • J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised discretization of continuous features, in: ICML, Morgan Kaufmann, 1995, pp. 194-202.
    • (1995) Morgan Kaufmann , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 7
    • 27944494029 scopus 로고    scopus 로고
    • An extension of naive Bayes classifier
    • R. Yager An extension of naive Bayes classifier Information Science 176 2006 577 588
    • (2006) Information Science , vol.176 , pp. 577-588
    • Yager, R.1
  • 8
    • 33947276673 scopus 로고    scopus 로고
    • Improving classification performance using unlabeled data: Naive Bayesian case
    • DOI 10.1016/j.knosys.2006.05.014, PII S0950705106001365
    • C.-H. Lee Improving classification performance using unlabeled data: naive Bayesian case Knowledge-Based Systems 20 2007 220 224 (Pubitemid 46436458)
    • (2007) Knowledge-Based Systems , vol.20 , Issue.3 , pp. 220-224
    • Lee, C.-H.1
  • 11
    • 50949109918 scopus 로고    scopus 로고
    • A selective Bayes classifier for classifying incomplete data based on gain ratio
    • J. Chen, H. Huang, F. Tian, and S. Tian A selective Bayes classifier for classifying incomplete data based on gain ratio Knowledge-Based Systems 21 2008 530 534
    • (2008) Knowledge-Based Systems , vol.21 , pp. 530-534
    • Chen, J.1    Huang, H.2    Tian, F.3    Tian, S.4
  • 13
    • 36948999941 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • A. Asuncion, D. Newman, UCI machine learning repository, 2007, University of California, Irvine, School of Information and Computer Sciences.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.2
  • 15
    • 22244449596 scopus 로고    scopus 로고
    • High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses
    • DOI 10.1002/ijc.21004
    • D. Abd El-Rehim, G. Ball, S. Pinder, E. Rakha, C. Paish, J. Robertson, D. Macmillan, R. Blamey, and I. Ellis High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses International Journal of Cancer 116 2005 340 350 (Pubitemid 40993329)
    • (2005) International Journal of Cancer , vol.116 , Issue.3 , pp. 340-350
    • Abd El-Rehim, D.M.1    Ball, G.2    Finder, S.E.3    Rakha, E.4    Paish, C.5    Robertson, J.F.R.6    Macmillan, D.7    Blamey, R.W.8    Ellis, I.O.9
  • 18
    • 0034301677 scopus 로고    scopus 로고
    • Lazy learning of Bayesian rules
    • Z. Zheng, and G. Webb Lazy learning of Bayesian rules Machine Learning 41 2000 53 84
    • (2000) Machine Learning , vol.41 , pp. 53-84
    • Zheng, Z.1    Webb, G.2
  • 19
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes
    • A. Ng, and M. Jordan On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes Advances in Neural Information Processing Systems (NIPS) 14 2002
    • (2002) Advances in Neural Information Processing Systems (NIPS) , vol.14
    • Ng, A.1    Jordan, M.2
  • 30
    • 70349087883 scopus 로고
    • Rule induction in forensic science
    • Online Publications
    • I. Evett, and E. Spiehler Rule induction in forensic science KBS in Goverment 1987 Online Publications 107 118
    • (1987) KBS in Goverment , pp. 107-118
    • Evett, I.1    Spiehler, E.2
  • 32
    • 0000461385 scopus 로고
    • Algorithm as 181: The w test for normality
    • P. Royston Algorithm as 181: The w test for normality Applied Statistics 31 1982 176 180
    • (1982) Applied Statistics , vol.31 , pp. 176-180
    • Royston, P.1
  • 33
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2- 4
    • F. Harrell Jr., K. Lee, and D. Mark Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors Statistics in Medicine 15 1996 361 387 (Pubitemid 26072233)
    • (1996) Statistics in Medicine , vol.15 , Issue.4 , pp. 361-387
    • Harrell Jr., F.E.1    Lee, K.L.2    Mark, D.B.3
  • 35
    • 52549127071 scopus 로고    scopus 로고
    • Roc curve, lift chart and calibration plot
    • M. Vuk, and T. Curk Roc curve, lift chart and calibration plot Metodološki zvezki 3 2006 89 108
    • (2006) Metodološki Zvezki , vol.3 , pp. 89-108
    • Vuk, M.1    Curk, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.