-
1
-
-
33644680809
-
Building the mammalian heart from two sources of myocardial cells
-
Buckingham M., Meilhac S., Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 2005, 6:826-835.
-
(2005)
Nat Rev Genet
, vol.6
, pp. 826-835
-
-
Buckingham, M.1
Meilhac, S.2
Zaffran, S.3
-
2
-
-
33748621746
-
Making or breaking the heart: from lineage determination to morphogenesis
-
Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis. Cell 2006, 126:1037-1048.
-
(2006)
Cell
, vol.126
, pp. 1037-1048
-
-
Srivastava, D.1
-
3
-
-
0035461911
-
The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm
-
Kelly R.G., Brown N.A., Buckingham M.E. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 2001, 1:435-440.
-
(2001)
Dev Cell
, vol.1
, pp. 435-440
-
-
Kelly, R.G.1
Brown, N.A.2
Buckingham, M.E.3
-
4
-
-
0346783332
-
Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart
-
Cai C.L., Liang X., Shi Y., Chu P.H., Pfaff S.L., Chen J., et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 2003, 5:877-889.
-
(2003)
Dev Cell
, vol.5
, pp. 877-889
-
-
Cai, C.L.1
Liang, X.2
Shi, Y.3
Chu, P.H.4
Pfaff, S.L.5
Chen, J.6
-
5
-
-
17644382625
-
Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart
-
Waldo K.L., Hutson M.R., Ward C.C., Zdanowicz M., Stadt H.A., Kumiski D., et al. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev Biol 2005, 281:78-90.
-
(2005)
Dev Biol
, vol.281
, pp. 78-90
-
-
Waldo, K.L.1
Hutson, M.R.2
Ward, C.C.3
Zdanowicz, M.4
Stadt, H.A.5
Kumiski, D.6
-
6
-
-
0033678548
-
Decoding calcium signals involved in cardiac growth and function
-
Frey N., McKinsey T.A., Olson E.N. Decoding calcium signals involved in cardiac growth and function. Nat Med 2000, 6:1221-1227.
-
(2000)
Nat Med
, vol.6
, pp. 1221-1227
-
-
Frey, N.1
McKinsey, T.A.2
Olson, E.N.3
-
7
-
-
0037049977
-
Cardiac excitation-contraction coupling
-
Bers D.M. Cardiac excitation-contraction coupling. Nature 2002, 415:198-205.
-
(2002)
Nature
, vol.415
, pp. 198-205
-
-
Bers, D.M.1
-
8
-
-
0038621255
-
Intracellular calcium plays an essential role in cardiac development
-
Porter G.A., Makuck R.F., Rivkees S.A. Intracellular calcium plays an essential role in cardiac development. Dev Dyn 2003, 227:280-290.
-
(2003)
Dev Dyn
, vol.227
, pp. 280-290
-
-
Porter, G.A.1
Makuck, R.F.2
Rivkees, S.A.3
-
10
-
-
13344250473
-
Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor
-
Matsumoto M., Nakagawa T., Inoue T., Nagata E., Tanaka K., Takano H., et al. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 1996, 379:168-171.
-
(1996)
Nature
, vol.379
, pp. 168-171
-
-
Matsumoto, M.1
Nakagawa, T.2
Inoue, T.3
Nagata, E.4
Tanaka, K.5
Takano, H.6
-
11
-
-
25844462280
-
IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism
-
Futatsugi A., Nakamura T., Yamada M.K., Ebisui E., Nakamura K., Uchida K., et al. IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science 2005, 309:2232-2234.
-
(2005)
Science
, vol.309
, pp. 2232-2234
-
-
Futatsugi, A.1
Nakamura, T.2
Yamada, M.K.3
Ebisui, E.4
Nakamura, K.5
Uchida, K.6
-
12
-
-
77958525945
-
Gene knock-outs of inositol 1,4,5-trisphosphate receptors types 1 and 2 result in perturbation of cardiogenesis
-
Uchida K., Aramaki M., Nakazawa M., Yamagishi C., Makino S., Fukuda K., et al. Gene knock-outs of inositol 1,4,5-trisphosphate receptors types 1 and 2 result in perturbation of cardiogenesis. PLoS ONE 2010, 5.
-
(2010)
PLoS ONE
, vol.5
-
-
Uchida, K.1
Aramaki, M.2
Nakazawa, M.3
Yamagishi, C.4
Makino, S.5
Fukuda, K.6
-
13
-
-
0033968447
-
The basic helix-loop-helix transcription factor, dHAND, is required for vascular development
-
Yamagishi H., Olson E.N., Srivastava D. The basic helix-loop-helix transcription factor, dHAND, is required for vascular development. J Clin Invest 2000, 105:261-270.
-
(2000)
J Clin Invest
, vol.105
, pp. 261-270
-
-
Yamagishi, H.1
Olson, E.N.2
Srivastava, D.3
-
14
-
-
34547431985
-
Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells
-
Kikawada T., Saito A., Kanamori Y., Nakahara Y., Iwata K., Tanaka D., et al. Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proc Natl Acad Sci U S A 2007, 104:11585-11590.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 11585-11590
-
-
Kikawada, T.1
Saito, A.2
Kanamori, Y.3
Nakahara, Y.4
Iwata, K.5
Tanaka, D.6
-
15
-
-
0027383023
-
Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants
-
Lints T.J., Parsons L.M., Hartley L., Lyons I., Harvey R.P. Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 1993, 119:419-431.
-
(1993)
Development
, vol.119
, pp. 419-431
-
-
Lints, T.J.1
Parsons, L.M.2
Hartley, L.3
Lyons, I.4
Harvey, R.P.5
-
16
-
-
0028341883
-
Chamber specification of atrial myosin light chain-2 expression precedes septation during murine cardiogenesis
-
Kubalak S.W., Miller-Hance W.C., O'Brien T.X., Dyson E., Chien K.R. Chamber specification of atrial myosin light chain-2 expression precedes septation during murine cardiogenesis. J Biol Chem 1994, 269:16961-16970.
-
(1994)
J Biol Chem
, vol.269
, pp. 16961-16970
-
-
Kubalak, S.W.1
Miller-Hance, W.C.2
O'Brien, T.X.3
Dyson, E.4
Chien, K.R.5
-
17
-
-
0034234753
-
Ventricular expression of tbx5 inhibits normal heart chamber development
-
Liberatore C.M., Searcy-Schrick R.D., Yutzey K.E. Ventricular expression of tbx5 inhibits normal heart chamber development. Dev Biol 2000, 223:169-180.
-
(2000)
Dev Biol
, vol.223
, pp. 169-180
-
-
Liberatore, C.M.1
Searcy-Schrick, R.D.2
Yutzey, K.E.3
-
18
-
-
33646680831
-
Isl1Cre reveals a common Bmp pathway in heart and limb development
-
Yang L., Cai C.L., Lin L., Qyang Y., Chung C., Monteiro R.M., et al. Isl1Cre reveals a common Bmp pathway in heart and limb development. Development 2006, 133:1575-1585.
-
(2006)
Development
, vol.133
, pp. 1575-1585
-
-
Yang, L.1
Cai, C.L.2
Lin, L.3
Qyang, Y.4
Chung, C.5
Monteiro, R.M.6
-
19
-
-
0037235556
-
BMP signaling is required for septation of the outflow tract of the mammalian heart
-
Delot E.C., Bahamonde M.E., Zhao M., Lyons K.M. BMP signaling is required for septation of the outflow tract of the mammalian heart. Development 2003, 130:209-220.
-
(2003)
Development
, vol.130
, pp. 209-220
-
-
Delot, E.C.1
Bahamonde, M.E.2
Zhao, M.3
Lyons, K.M.4
-
20
-
-
0030903857
-
Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND
-
Srivastava D., Thomas T., Lin Q., Kirby M.L., Brown D., Olson E.N. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 1997, 16:154-160.
-
(1997)
Nat Genet
, vol.16
, pp. 154-160
-
-
Srivastava, D.1
Thomas, T.2
Lin, Q.3
Kirby, M.L.4
Brown, D.5
Olson, E.N.6
-
21
-
-
9444265974
-
Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors
-
Hu T., Yamagishi H., Maeda J., McAnally J., Yamagishi C., Srivastava D. Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development 2004, 131:5491-5502.
-
(2004)
Development
, vol.131
, pp. 5491-5502
-
-
Hu, T.1
Yamagishi, H.2
Maeda, J.3
McAnally, J.4
Yamagishi, C.5
Srivastava, D.6
-
22
-
-
21244464347
-
BOP, a regulator of right ventricular heart development, is a direct transcriptional target of MEF2C in the developing heart
-
Phan D., Rasmussen T.L., Nakagawa O., McAnally J., Gottlieb P.D., Tucker P.W., et al. BOP, a regulator of right ventricular heart development, is a direct transcriptional target of MEF2C in the developing heart. Development 2005, 132:2669-2678.
-
(2005)
Development
, vol.132
, pp. 2669-2678
-
-
Phan, D.1
Rasmussen, T.L.2
Nakagawa, O.3
McAnally, J.4
Gottlieb, P.D.5
Tucker, P.W.6
-
23
-
-
65449133141
-
Signaling pathways controlling second heart field development
-
Rochais F., Mesbah K., Kelly R.G. Signaling pathways controlling second heart field development. Circ Res 2009, 104:933-942.
-
(2009)
Circ Res
, vol.104
, pp. 933-942
-
-
Rochais, F.1
Mesbah, K.2
Kelly, R.G.3
-
24
-
-
77953617366
-
Type 3 inositol 1,4,5-trisphosphate receptor negatively regulates apoptosis during mouse embryonic stem cell differentiation
-
Liang J., Wang Y.J., Tang Y., Cao N., Wang J., Yang H.T. Type 3 inositol 1,4,5-trisphosphate receptor negatively regulates apoptosis during mouse embryonic stem cell differentiation. Cell Death Differ 2010, 17:1141-1154.
-
(2010)
Cell Death Differ
, vol.17
, pp. 1141-1154
-
-
Liang, J.1
Wang, Y.J.2
Tang, Y.3
Cao, N.4
Wang, J.5
Yang, H.T.6
-
25
-
-
0036578662
-
Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis
-
Gottlieb P.D., Pierce S.A., Sims R.J., Yamagishi H., Weihe E.K., Harriss J.V., et al. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet 2002, 31:25-32.
-
(2002)
Nat Genet
, vol.31
, pp. 25-32
-
-
Gottlieb, P.D.1
Pierce, S.A.2
Sims, R.J.3
Yamagishi, H.4
Weihe, E.K.5
Harriss, J.V.6
-
26
-
-
4544236360
-
Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development
-
Dodou E., Verzi M.P., Anderson J.P., Xu S.M., Black B.L. Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 2004, 131:3931-3942.
-
(2004)
Development
, vol.131
, pp. 3931-3942
-
-
Dodou, E.1
Verzi, M.P.2
Anderson, J.P.3
Xu, S.M.4
Black, B.L.5
-
27
-
-
22244461540
-
Calreticulin signals upstream of calcineurin and MEF2C in a critical Ca(2+)-dependent signaling cascade
-
Lynch J., Guo L., Gelebart P., Chilibeck K., Xu J., Molkentin J.D., et al. Calreticulin signals upstream of calcineurin and MEF2C in a critical Ca(2+)-dependent signaling cascade. J Cell Biol 2005, 170:37-47.
-
(2005)
J Cell Biol
, vol.170
, pp. 37-47
-
-
Lynch, J.1
Guo, L.2
Gelebart, P.3
Chilibeck, K.4
Xu, J.5
Molkentin, J.D.6
-
28
-
-
0035802110
-
Functional specialization of calreticulin domains
-
Nakamura K., Zuppini A., Arnaudeau S., Lynch J., Ahsan I., Krause R., et al. Functional specialization of calreticulin domains. J Cell Biol 2001, 154:961-972.
-
(2001)
J Cell Biol
, vol.154
, pp. 961-972
-
-
Nakamura, K.1
Zuppini, A.2
Arnaudeau, S.3
Lynch, J.4
Ahsan, I.5
Krause, R.6
-
29
-
-
0033535353
-
Calreticulin is essential for cardiac development
-
Mesaeli N., Nakamura K., Zvaritch E., Dickie P., Dziak E., Krause K.H., et al. Calreticulin is essential for cardiac development. J Cell Biol 1999, 144:857-868.
-
(1999)
J Cell Biol
, vol.144
, pp. 857-868
-
-
Mesaeli, N.1
Nakamura, K.2
Zvaritch, E.3
Dickie, P.4
Dziak, E.5
Krause, K.H.6
-
30
-
-
13544272476
-
Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages
-
Laugwitz K.L., Moretti A., Lam J., Gruber P., Chen Y., Woodard S., et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 2005, 433:647-653.
-
(2005)
Nature
, vol.433
, pp. 647-653
-
-
Laugwitz, K.L.1
Moretti, A.2
Lam, J.3
Gruber, P.4
Chen, Y.5
Woodard, S.6
|