메뉴 건너뛰기




Volumn 6687 LNCS, Issue PART 2, 2011, Pages 59-67

Effective diagnosis of Alzheimer's disease by means of distance metric learning and random forest

Author keywords

Alzheimer's disease; Distance Metric Learning; Kernel Principal Components Analysis; Random Forest; SPECT Brain Imaging; Support Vector Machines

Indexed keywords

ALZHEIMER'S DISEASE; DISTANCE METRIC LEARNING; KERNEL PRINCIPAL COMPONENTS ANALYSIS; RANDOM FORESTS; SPECT BRAIN IMAGING;

EID: 79956294776     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-21326-7_7     Document Type: Conference Paper
Times cited : (3)

References (14)
  • 2
    • 0037293284 scopus 로고    scopus 로고
    • Neuroimaging and early diagnosis of alzheimer disease: A look to the future
    • DOI 10.1148/radiol.2262011600
    • Petrella, J. R., Coleman, R. E., Doraiswamy, P. M.: Neuroimaging and Early Diagnosis of Alzheimer's Disease: A Look to the Future. Radiology 226, 315-336 (2003) (Pubitemid 36313415)
    • (2003) Radiology , vol.226 , Issue.2 , pp. 315-336
    • Petrella, J.R.1    Coleman, R.E.2    Doraiswamy, P.M.3
  • 3
    • 79956316571 scopus 로고    scopus 로고
    • SPECT: Single-photon emission computed tomography: A primer
    • English, R. J., Childs, J.: SPECT: Single-Photon Emission Computed Tomography: A Primer. Society of Nuclear Medicine (1996)
    • (1996) Society of Nuclear Medicine
    • English, R.J.1    Childs, J.2
  • 4
    • 33947376436 scopus 로고    scopus 로고
    • SVM feature selection for classification of SPECT images of Alzheimer's disease using spatial information
    • Fung, G., Stoeckel, J.: SVM feature selection for classification of SPECT images of Alzheimer's disease using spatial information. Knowledge and Information Systems 11(2), 243-258 (2007)
    • (2007) Knowledge and Information Systems , vol.11 , Issue.2 , pp. 243-258
    • Fung, G.1    Stoeckel, J.2
  • 5
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman, L.: Random Forests. Machine Learning 45(1), 5-32 (2001) (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 7
    • 67649535812 scopus 로고    scopus 로고
    • An Automatic Threshold-Based Scaling Method for Enhancing the Usefulness of Tc-HMPAO SPECT in the Diagnosis of Alzheimer's Disease
    • Medical Image Computing and Computer-Assisted Intervention - MICCAI'98
    • Saxena, P., Pavel, D. G., Quintana, J. C., Horwitz, B.: An automatic threshold-based scaling method for enhancing the usefulness of tc-HMPAO SPECT in the diagnosis of alzheimer# 146s disease. In: Wells, W. M., Colchester, A. C. F., Delp, S. L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 623-630. Springer, Heidelberg (1998) (Pubitemid 128152709)
    • (1998) LECTURE NOTES IN COMPUTER SCIENCE , Issue.1496 , pp. 623-630
    • Saxena, P.1    Pavel, D.G.2    Quintana, J.C.3    Horwitz, B.4
  • 8
    • 67649982863 scopus 로고    scopus 로고
    • SVM-based computer-aided diagnosis of the Alzheimer's disease using t-test NMSE feature selection with feature correlation weighting
    • Chaves, R., Ramírez, J., Górriz, J. M., López, M., Salas-Gonzalez, D., Alvarez, I., Segovia, F.: SVM-based computer-aided diagnosis of the Alzheimer's disease using t-test NMSE feature selection with feature correlation weighting. Neuroscience Letters 461, 293-297 (2009)
    • (2009) Neuroscience Letters , vol.461 , pp. 293-297
    • Chaves, R.1    Ramírez, J.2    Górriz, J.M.3    López, M.4    Salas-Gonzalez, D.5    Alvarez, I.6    Segovia, F.7
  • 9
    • 0032986174 scopus 로고    scopus 로고
    • Principal component analysis of the dynamic response measured by fMRI: A generalized linear systems framework
    • DOI 10.1016/S0730-725X(99)00028-4, PII S0730725X99000284
    • Andersen, A. H., Gash, D. M., Avison, M. J.: Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework. Journal of Magnetic Resonance Imaging 17, 795-815 (1999) (Pubitemid 29296265)
    • (1999) Magnetic Resonance Imaging , vol.17 , Issue.6 , pp. 795-815
    • Andersen, A.H.1    Gash, D.M.2    Avison, M.J.3
  • 12
    • 49449088902 scopus 로고    scopus 로고
    • Learning a Mahalanobis distance metric for data clustering and classification
    • Xiang, S., Nie, F., Zhang, C.: Learning a Mahalanobis distance metric for data clustering and classification. Pattern Recognition 41, 3600-3612 (2008)
    • (2008) Pattern Recognition , vol.41 , pp. 3600-3612
    • Xiang, S.1    Nie, F.2    Zhang, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.