메뉴 건너뛰기




Volumn 85, Issue 11, 2011, Pages 5532-5545

Interplay between modified vaccinia virus ankara and dendritic cells: Phenotypic and functional maturation of bystander dendritic cells

Author keywords

[No Author keywords available]

Indexed keywords

CD4 ANTIGEN; CD8 ANTIGEN; CD86 ANTIGEN; CHEMOKINE; CYTOKINE; GAMMA INTERFERON; GAMMA INTERFERON INDUCIBLE PROTEIN 10; HLA DR ANTIGEN; INTERFERON; TUMOR NECROSIS FACTOR ALPHA;

EID: 79956078254     PISSN: 0022538X     EISSN: 10985514     Source Type: Journal    
DOI: 10.1128/JVI.02267-10     Document Type: Article
Times cited : (32)

References (50)
  • 1
    • 0032503233 scopus 로고    scopus 로고
    • The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses
    • Antoine, G., F. Scheiflinger, F. Dorner, and F. G. Falkner. 1998. The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244:365-396.
    • (1998) Virology , vol.244 , pp. 365-396
    • Antoine, G.1    Scheiflinger, F.2    Dorner, F.3    Falkner, F.G.4
  • 2
    • 25444448498 scopus 로고    scopus 로고
    • Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus
    • Aravalli, R. N., S. Hu, T. N. Rowen, J. M. Palmquist, and J. R. Lokensgard. 2005. Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J. Immunol. 175:4189-4193.
    • (2005) J. Immunol. , vol.175 , pp. 4189-4193
    • Aravalli, R.N.1    Hu, S.2    Rowen, T.N.3    Palmquist, J.M.4    Lokensgard, J.R.5
  • 3
    • 0036133080 scopus 로고    scopus 로고
    • Crosspresentation of human cytomegalovirus pp65 (UL83) to CD8+ T cells is regulated by virus-induced, soluble-mediator-dependent maturation of dendritic cells
    • Arrode, G., C. Boccaccio, J. P. Abastado, and C. Davrinche. 2002. Crosspresentation of human cytomegalovirus pp65 (UL83) to CD8+ T cells is regulated by virus-induced, soluble-mediator-dependent maturation of dendritic cells. J. Virol. 76:142-150.
    • (2002) J. Virol. , vol.76 , pp. 142-150
    • Arrode, G.1    Boccaccio, C.2    Abastado, J.P.3    Davrinche, C.4
  • 4
    • 4944231746 scopus 로고    scopus 로고
    • Dendritic cells infected by recombinant modified vaccinia virus Ankara retain immunogenicity in vivo despite in vitro dysfunction
    • Behboudi, S., A. Moore, S. C. Gilbert, C. L. Nicoll, and A. V. Hill. 2004. Dendritic cells infected by recombinant modified vaccinia virus Ankara retain immunogenicity in vivo despite in vitro dysfunction. Vaccine 22:4326-4331.
    • (2004) Vaccine , vol.22 , pp. 4326-4331
    • Behboudi, S.1    Moore, A.2    Gilbert, S.C.3    Nicoll, C.L.4    Hill, A.V.5
  • 5
    • 0041923582 scopus 로고    scopus 로고
    • Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses
    • Belyakov, I. M., et al. 2003. Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc. Natl. Acad. Sci. U. S. A. 100:9458-9463.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 9458-9463
    • Belyakov, I.M.1
  • 6
    • 0842300368 scopus 로고    scopus 로고
    • Cutting edge: conventional CD8 alpha+ dendritic cells are generally involved in priming CTL immunity to viruses
    • Belz, G. T., et al. 2004. Cutting edge: conventional CD8 alpha+ dendritic cells are generally involved in priming CTL immunity to viruses. J. Immunol. 172:1996-2000.
    • (2004) J. Immunol. , vol.172 , pp. 1996-2000
    • Belz, G.T.1
  • 7
    • 33748171464 scopus 로고    scopus 로고
    • The interferon-inducible RNA helicase, mda-5, is involved in measles virus-induced expression of antiviral cytokines
    • Berghall, H., et al. 2006. The interferon-inducible RNA helicase, mda-5, is involved in measles virus-induced expression of antiviral cytokines. Microbes Infect. 8:2138-2144.
    • (2006) Microbes Infect , vol.8 , pp. 2138-2144
    • Berghall, H.1
  • 8
    • 77951461120 scopus 로고    scopus 로고
    • Preclinical studies of a modified vaccinia virus Ankara-based HIV candidate vaccine: antigen presentation and antiviral effect
    • Brandler, S., et al. 2010. Preclinical studies of a modified vaccinia virus Ankara-based HIV candidate vaccine: antigen presentation and antiviral effect. J. Virol. 84:5314-5328.
    • (2010) J. Virol. , vol.84 , pp. 5314-5328
    • Brandler, S.1
  • 9
    • 58749095873 scopus 로고    scopus 로고
    • Functional dichotomy of dendritic cells following interaction with Leishmania braziliensis: infected cells produce high levels of TNF-alpha, whereas bystander dendritic cells are activated to promote T cell responses
    • Carvalho, L. P., E. J. Pearce, and P. Scott. 2008. Functional dichotomy of dendritic cells following interaction with Leishmania braziliensis: infected cells produce high levels of TNF-alpha, whereas bystander dendritic cells are activated to promote T cell responses. J. Immunol. 181:6473-6480.
    • (2008) J. Immunol. , vol.181 , pp. 6473-6480
    • Carvalho, L.P.1    Pearce, E.J.2    Scott, P.3
  • 10
    • 33748642155 scopus 로고    scopus 로고
    • Differences and similarities in viral life cycle progression and host cell physiology after infection of human dendritic cells with modified vaccinia virus Ankara and vaccinia virus
    • Chahroudi, A., et al. 2006. Differences and similarities in viral life cycle progression and host cell physiology after infection of human dendritic cells with modified vaccinia virus Ankara and vaccinia virus. J. Virol. 80:8469-8481.
    • (2006) J. Virol. , vol.80 , pp. 8469-8481
    • Chahroudi, A.1
  • 11
    • 58149136160 scopus 로고    scopus 로고
    • Post-step modifications for research on HIV vaccines
    • Corey, L., M. J. McElrath, and J. G. Kublin. 2009. Post-step modifications for research on HIV vaccines. AIDS 23:3-8.
    • (2009) AIDS , vol.23 , pp. 3-8
    • Corey, L.1    McElrath, M.J.2    Kublin, J.G.3
  • 13
    • 0036469827 scopus 로고    scopus 로고
    • A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays
    • Currier, J. R., et al. 2002. A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays. J. Immunol. Methods 260:157-172.
    • (2002) J. Immunol. Methods. , vol.260 , pp. 157-172
    • Currier, J.R.1
  • 14
    • 78649733251 scopus 로고    scopus 로고
    • Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate
    • Currier, J. R., et al. 2010. Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate. PLoS One 5:e13983.
    • (2010) PLoS One , vol.5
    • Currier, J.R.1
  • 15
    • 67650915065 scopus 로고    scopus 로고
    • Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6. MDA-5 and the NALP3 inflammasome
    • Delaloye, J., et al. 2009. Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog. 5:e1000480.
    • (2009) PLoS Pathog , vol.5
    • Delaloye, J.1
  • 16
    • 9244248089 scopus 로고    scopus 로고
    • Modified vaccinia virus Ankara as antigen delivery system: how can we best use its potential?
    • Drexler, I., C. Staib, and G. Sutter. 2004. Modified vaccinia virus Ankara as antigen delivery system: how can we best use its potential? Curr. Opin. Biotechnol. 15:506-512.
    • (2004) Curr. Opin. Biotechnol. , vol.15 , pp. 506-512
    • Drexler, I.1    Staib, C.2    Sutter, G.3
  • 17
    • 4043142172 scopus 로고    scopus 로고
    • Modified vaccinia virus Ankara induces moderate activation of human dendritic cells
    • Drillien, R., D. Spehner, and D. Hanau. 2004. Modified vaccinia virus Ankara induces moderate activation of human dendritic cells. J. Gen. Virol. 85:2167-2175.
    • (2004) J. Gen. Virol. , vol.85 , pp. 2167-2175
    • Drillien, R.1    Spehner, D.2    Hanau, D.3
  • 18
    • 0036533663 scopus 로고    scopus 로고
    • IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking
    • Dufour, J. H., et al. 2002. IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J. Immunol. 168:3195-3204.
    • (2002) J. Immunol. , vol.168 , pp. 3195-3204
    • Dufour, J.H.1
  • 19
    • 0032715788 scopus 로고    scopus 로고
    • Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion
    • Engelmayer, J., et al. 1999. Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J. Immunol. 163: 6762-6768.
    • (1999) J. Immunol. , vol.163 , pp. 6762-6768
    • Engelmayer, J.1
  • 20
    • 35448974187 scopus 로고    scopus 로고
    • Cross-priming of cytotoxic T cells dictates antigen requisites for modified vaccinia virus Ankara vector vaccines
    • Gasteiger, G., W. Kastenmuller, R. Ljapoci, G. Sutter, and I. Drexler. 2007. Cross-priming of cytotoxic T cells dictates antigen requisites for modified vaccinia virus Ankara vector vaccines. J. Virol. 81:11925-11936.
    • (2007) J. Virol. , vol.81 , pp. 11925-11936
    • Gasteiger, G.1    Kastenmuller, W.2    Ljapoci, R.3    Sutter, G.4    Drexler, I.5
  • 21
    • 21844467198 scopus 로고    scopus 로고
    • Simultaneous detection of multiple cytokines and chemokines from nonhuman primates using Luminex technology
    • Giavedoni, L. D. 2005. Simultaneous detection of multiple cytokines and chemokines from nonhuman primates using Luminex technology. J. Immunol. Methods 301:89-101.
    • (2005) J. Immunol. Methods. , vol.301 , pp. 89-101
    • Giavedoni, L.D.1
  • 22
    • 45849104841 scopus 로고    scopus 로고
    • The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer
    • Gomez, C. E., J. L. Najera, M. Krupa, and M. Esteban. 2008. The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer. Curr. Gene Ther. 8:97-120.
    • (2008) Curr. Gene Ther. , vol.8 , pp. 97-120
    • Gomez, C.E.1    Najera, J.L.2    Krupa, M.3    Esteban, M.4
  • 23
    • 34547747839 scopus 로고    scopus 로고
    • Distinct gene expression profiling after infection of immature human monocyte-derived dendritic cells by the attenuated poxvirus vectors MVA and NYVAC
    • Guerra, S., et al. 2007. Distinct gene expression profiling after infection of immature human monocyte-derived dendritic cells by the attenuated poxvirus vectors MVA and NYVAC. J. Virol. 81:8707-8721.
    • (2007) J. Virol. , vol.81 , pp. 8707-8721
    • Guerra, S.1
  • 24
    • 0034468079 scopus 로고    scopus 로고
    • Canarypox virus-induced maturation of dendritic cells is mediated by apoptotic cell death and tumor necrosis factor alpha secretion
    • Ignatius, R., et al. 2000. Canarypox virus-induced maturation of dendritic cells is mediated by apoptotic cell death and tumor necrosis factor alpha secretion. J. Virol. 74:11329-11338.
    • (2000) J. Virol. , vol.74 , pp. 11329-11338
    • Ignatius, R.1
  • 25
    • 50649101706 scopus 로고    scopus 로고
    • Using distinct molecular signatures of human monocytes and dendritic cells to predict adjuvant activity and pyrogenicity of TLR agonists
    • Kamgang, R. K., et al. 2008. Using distinct molecular signatures of human monocytes and dendritic cells to predict adjuvant activity and pyrogenicity of TLR agonists. Med. Microbiol. Immunol. 197:369-379.
    • (2008) Med. Microbiol. Immunol. , vol.197 , pp. 369-379
    • Kamgang, R.K.1
  • 26
    • 33745269769 scopus 로고    scopus 로고
    • Infection of human dendritic cells with recombinant vaccinia virus MVA reveals general persistence of viral early transcription but distinct maturation-dependent cytopathogenicity
    • Kastenmuller, W., et al. 2006. Infection of human dendritic cells with recombinant vaccinia virus MVA reveals general persistence of viral early transcription but distinct maturation-dependent cytopathogenicity. Virology 350:276-288.
    • (2006) Virology , vol.350 , pp. 276-288
    • Kastenmuller, W.1
  • 27
    • 0037453124 scopus 로고    scopus 로고
    • Evaluation of 21st-century risks of smallpox vaccination and policy options
    • Lane, J. M., and J. Goldstein. 2003. Evaluation of 21st-century risks of smallpox vaccination and policy options. Ann. Intern. Med. 138:488-493.
    • (2003) Ann. Intern. Med. , vol.138 , pp. 488-493
    • Lane, J.M.1    Goldstein, J.2
  • 28
    • 62749084521 scopus 로고    scopus 로고
    • Modified vaccinia virus Ankara triggers chemotaxis of monocytes and early respiratory immigration of leukocytes by induction of CCL2 expression
    • Lehmann, M. H., et al. 2009. Modified vaccinia virus Ankara triggers chemotaxis of monocytes and early respiratory immigration of leukocytes by induction of CCL2 expression. J. Virol. 83:2540-2552.
    • (2009) J. Virol. , vol.83 , pp. 2540-2552
    • Lehmann, M.H.1
  • 29
    • 60349093083 scopus 로고    scopus 로고
    • Infection and maturation of monocyte-derived human dendritic cells by human respiratory syncytial virus, human metapneumovirus, and human parainfluenza virus type 3
    • Le Nouen, C., et al. 2009. Infection and maturation of monocyte-derived human dendritic cells by human respiratory syncytial virus, human metapneumovirus, and human parainfluenza virus type 3. Virology 385:169-182.
    • (2009) Virology , vol.385 , pp. 169-182
    • Le Nouen, C.1
  • 30
    • 27744451006 scopus 로고    scopus 로고
    • Disruption of MHC class II-restricted antigen presentation by vaccinia virus
    • Li, P., et al. 2005. Disruption of MHC class II-restricted antigen presentation by vaccinia virus. J. Immunol. 175:6481-6488.
    • (2005) J. Immunol. , vol.175 , pp. 6481-6488
    • Li, P.1
  • 31
    • 51149099027 scopus 로고    scopus 로고
    • CXCL10/CXCR3-mediated responses promote immunity to respiratory syncytial virus infection by augmenting dendritic cell and CD8(+) T cell efficacy
    • Lindell, D. M., T. E. Lane, and N. W. Lukacs. 2008. CXCL10/CXCR3-mediated responses promote immunity to respiratory syncytial virus infection by augmenting dendritic cell and CD8(+) T cell efficacy. Eur. J. Immunol. 38:2168-2179.
    • (2008) Eur. J. Immunol. , vol.38 , pp. 2168-2179
    • Lindell, D.M.1    Lane, T.E.2    Lukacs, N.W.3
  • 32
    • 42949155679 scopus 로고    scopus 로고
    • Dendritic cells are preferentially targeted among hematolymphocytes by modified vaccinia virus Ankara and play a key role in the induction of virus-specific T cell responses in vivo
    • Liu, L., R. Chavan, and M. B. Feinberg. 2008. Dendritic cells are preferentially targeted among hematolymphocytes by modified vaccinia virus Ankara and play a key role in the induction of virus-specific T cell responses in vivo. BMC Immunol. 9:15.
    • (2008) BMC Immunol , vol.9 , pp. 15
    • Liu, L.1    Chavan, R.2    Feinberg, M.B.3
  • 33
    • 0037689108 scopus 로고    scopus 로고
    • Structure of intracellular mature vaccinia virus visualized by in situ atomic force microscopy
    • Malkin, A. J., A. McPherson, and P. D. Gershon. 2003. Structure of intracellular mature vaccinia virus visualized by in situ atomic force microscopy. J. Virol. 77:6332-6340.
    • (2003) J. Virol. , vol.77 , pp. 6332-6340
    • Malkin, A.J.1    McPherson, A.2    Gershon, P.D.3
  • 34
    • 77950865479 scopus 로고    scopus 로고
    • Uncovering the interplay between CD8, CD4 and antibody responses to complex pathogens
    • Moutaftsi, M., et al. 2010. Uncovering the interplay between CD8, CD4 and antibody responses to complex pathogens. Future Microbiol. 5:221-239.
    • (2010) Future Microbiol , vol.5 , pp. 221-239
    • Moutaftsi, M.1
  • 35
    • 54249144531 scopus 로고    scopus 로고
    • Viral replication and paracrine effects result in distinct, functional responses of dendritic cells following infection with dengue 2 virus
    • Nightingale, Z. D., C. Patkar, and A. L. Rothman. 2008. Viral replication and paracrine effects result in distinct, functional responses of dendritic cells following infection with dengue 2 virus. J. Leukoc. Biol. 84:1028-1038.
    • (2008) J. Leukoc. Biol. , vol.84 , pp. 1028-1038
    • Nightingale, Z.D.1    Patkar, C.2    Rothman, A.L.3
  • 36
    • 77955329674 scopus 로고    scopus 로고
    • Modified vaccinia virus Ankara exerts potent immune modulatory activities in a murine model
    • Norder, M., et al. 2010. Modified vaccinia virus Ankara exerts potent immune modulatory activities in a murine model. PLoS One 5:e11400.
    • (2010) PLoS One , vol.5
    • Norder, M.1
  • 37
    • 0036525950 scopus 로고    scopus 로고
    • IFNalpha2a induces IP-10/CXCL10 and MIG/CXCL9 production in monocytederived dendritic cells and enhances their capacity to attract and stimulate CD8+ effector T cells
    • Padovan, E., G. C. Spagnoli, M. Ferrantini, and M. Heberer. 2002. IFNalpha2a induces IP-10/CXCL10 and MIG/CXCL9 production in monocytederived dendritic cells and enhances their capacity to attract and stimulate CD8+ effector T cells. J. Leukoc. Biol. 71:669-676.
    • (2002) J. Leukoc. Biol. , vol.71 , pp. 669-676
    • Padovan, E.1    Spagnoli, G.C.2    Ferrantini, M.3    Heberer, M.4
  • 38
    • 0030869567 scopus 로고    scopus 로고
    • Developmental regulation of MHC class II transport in mouse dendritic cells
    • Pierre, P., et al. 1997. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388:787-792.
    • (1997) Nature , vol.388 , pp. 787-792
    • Pierre, P.1
  • 39
    • 4644296064 scopus 로고    scopus 로고
    • Herpes simplex virus type-1-induced activation of myeloid dendritic cells: the roles of virus cell interaction and paracrine type I IFN secretion
    • Pollara, G., et al. 2004. Herpes simplex virus type-1-induced activation of myeloid dendritic cells: the roles of virus cell interaction and paracrine type I IFN secretion. J. Immunol. 173:4108-4119.
    • (2004) J. Immunol. , vol.173 , pp. 4108-4119
    • Pollara, G.1
  • 40
    • 70349659930 scopus 로고    scopus 로고
    • Vaccinia virus decreases major histocompatibility complex (MHC) class II antigen presentation, T-cell priming, and peptide association with MHC class II
    • Rehm, K. E., et al. 2009. Vaccinia virus decreases major histocompatibility complex (MHC) class II antigen presentation, T-cell priming, and peptide association with MHC class II. Immunology 128:381-392.
    • (2009) Immunology , vol.128 , pp. 381-392
    • Rehm, K.E.1
  • 41
    • 37549005122 scopus 로고    scopus 로고
    • Type I interferon regulates respiratory virus infected dendritic cell maturation and cytokine production
    • Rudd, B. D., G. D. Luker, K. E. Luker, R. S. Peebles, and N. W. Lukacs. 2007. Type I interferon regulates respiratory virus infected dendritic cell maturation and cytokine production. Viral Immunol. 20:531-540.
    • (2007) Viral Immunol , vol.20 , pp. 531-540
    • Rudd, B.D.1    Luker, G.D.2    Luker, K.E.3    Peebles, R.S.4    Lukacs, N.W.5
  • 42
    • 0013098971 scopus 로고    scopus 로고
    • Poxviruses and immune evasion
    • Seet, B. T., et al. 2003. Poxviruses and immune evasion. Annu. Rev. Immunol. 21:377-423.
    • (2003) Annu. Rev. Immunol. , vol.21 , pp. 377-423
    • Seet, B.T.1
  • 43
    • 0033998040 scopus 로고    scopus 로고
    • Consequences of Fas-mediated human dendritic cell apoptosis induced by measles virus
    • Servet-Delprat, C., et al. 2000. Consequences of Fas-mediated human dendritic cell apoptosis induced by measles virus. J. Virol. 74:4387-4393.
    • (2000) J. Virol. , vol.74 , pp. 4387-4393
    • Servet-Delprat, C.1
  • 44
    • 0026442276 scopus 로고
    • Nonreplicating vaccinia vector efficiently expresses recombinant genes
    • Sutter, G., and B. Moss. 1992. Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc. Natl. Acad. Sci. U. S. A. 89:10847-10851.
    • (1992) Proc. Natl. Acad. Sci. U. S. A. , vol.89 , pp. 10847-10851
    • Sutter, G.1    Moss, B.2
  • 45
    • 0141761519 scopus 로고    scopus 로고
    • Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus Ankara for antigen delivery
    • Sutter, G., and C. Staib. 2003. Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus Ankara for antigen delivery. Curr. Drug Targets Infect. Disord. 3:263-271.
    • (2003) Curr. Drug Targets Infect. Disord. , vol.3 , pp. 263-271
    • Sutter, G.1    Staib, C.2
  • 46
    • 36048967665 scopus 로고    scopus 로고
    • Modified vaccinia virus Ankara induces Toll-like receptor-independent type I interferon responses
    • Waibler, Z., et al. 2007. Modified vaccinia virus Ankara induces Toll-like receptor-independent type I interferon responses. J. Virol. 81:12102-12110.
    • (2007) J. Virol. , vol.81 , pp. 12102-12110
    • Waibler, Z.1
  • 47
    • 2442624472 scopus 로고    scopus 로고
    • Cellular and humoral immunity against vaccinia virus infection of mice
    • Xu, R., A. J. Johnson, D. Liggitt, and M. J. Bevan. 2004. Cellular and humoral immunity against vaccinia virus infection of mice. J. Immunol. 172:6265-6271.
    • (2004) J. Immunol. , vol.172 , pp. 6265-6271
    • Xu, R.1    Johnson, A.J.2    Liggitt, D.3    Bevan, M.J.4
  • 48
    • 34548127274 scopus 로고    scopus 로고
    • Vaccinia virus infection induces dendritic cell maturation but inhibits antigen presentation by MHC class II
    • Yao, Y., et al. 2007. Vaccinia virus infection induces dendritic cell maturation but inhibits antigen presentation by MHC class II. Cell. Immunol. 246:92-102.
    • (2007) Cell. Immunol. , vol.246 , pp. 92-102
    • Yao, Y.1
  • 49
    • 77956944306 scopus 로고    scopus 로고
    • Tc17 cells are capable of mediating immunity to vaccinia virus by acquisition of a cytotoxic phenotype
    • Yeh, N., et al. 2010. Tc17 cells are capable of mediating immunity to vaccinia virus by acquisition of a cytotoxic phenotype. J. Immunol. 185:2089-2098.
    • (2010) J. Immunol. , vol.185 , pp. 2089-2098
    • Yeh, N.1
  • 50
    • 33846232145 scopus 로고    scopus 로고
    • Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-beta
    • Zhu, J., J. Martinez, X. Huang, and Y. Yang. 2007. Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-beta. Blood 109:619-625.
    • (2007) Blood , vol.109 , pp. 619-625
    • Zhu, J.1    Martinez, J.2    Huang, X.3    Yang, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.