메뉴 건너뛰기




Volumn 51, Issue 3, 2011, Pages 519-531

Collaborative error-reflected models for cold-start recommender systems

Author keywords

Cold start problems; Collaborative filtering; Recommender systems

Indexed keywords

BUILDING MODEL; COLD START; COLD START PROBLEMS; COLLABORATIVE FILTERING; ERROR INFORMATION; EXPLICIT RATINGS; PREDICTION ERRORS;

EID: 79955926419     PISSN: 01679236     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dss.2011.02.015     Document Type: Article
Times cited : (95)

References (31)
  • 1
    • 34948850364 scopus 로고    scopus 로고
    • A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem
    • DOI 10.1016/j.ins.2007.07.024, PII S0020025507003751
    • H.J. Ahn A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem Information Sciences 178 1 2008 37 51 (Pubitemid 47531785)
    • (2008) Information Sciences , vol.178 , Issue.1 , pp. 37-51
    • Ahn, H.J.1
  • 2
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • DOI 10.1109/TKDE.2005.99
    • G. Adomavicius, and A. Tuzhilin Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions IEEE Transactions on Knowledge and Data Engineering 17 6 2005 734 749 (Pubitemid 40860454)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 4
    • 47849096182 scopus 로고    scopus 로고
    • Using error-correcting dependencies for collaborative filtering
    • G. Bogdanova, and T. Georgieva Using error-correcting dependencies for collaborative filtering Data & Knowledge Engineering 66 3 2008 402 413
    • (2008) Data & Knowledge Engineering , vol.66 , Issue.3 , pp. 402-413
    • Bogdanova, G.1    Georgieva, T.2
  • 7
    • 35348914807 scopus 로고    scopus 로고
    • Google news personalization: Scalable online collaborative filtering
    • DOI 10.1145/1242572.1242610, 16th International World Wide Web Conference, WWW2007
    • A. Das, M. Datar, A. Garg, and S. Rajaram Google news personalization: scalable online collaborative filtering Proceedings of the 16th International World Wide Web Conference 2007 271 280 (Pubitemid 47582257)
    • (2007) 16th International World Wide Web Conference, WWW2007 , pp. 271-280
    • Das, A.S.1    Datar, M.2    Garg, A.3    Rajaram, S.4
  • 8
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30 (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 13
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • T. Hofmann Latent semantic models for collaborative filtering ACM Transactions on Information Systems 22 1 2004 89 115
    • (2004) ACM Transactions on Information Systems , vol.22 , Issue.1 , pp. 89-115
    • Hofmann, T.1
  • 14
    • 72249090589 scopus 로고    scopus 로고
    • Maximizing customer satisfaction through an online recommendation system: A novel associative classification model
    • Y. Jiang, J. Shang, and Y. Liu Maximizing customer satisfaction through an online recommendation system: a novel associative classification model Decision Support Systems 48 2010 470 479
    • (2010) Decision Support Systems , vol.48 , pp. 470-479
    • Jiang, Y.1    Shang, J.2    Liu, Y.3
  • 15
    • 10944271769 scopus 로고    scopus 로고
    • VISCORS: A visual-content recommender for the mobile Web
    • C.Y. Kim, J.K. Lee, Y.H. Cho, and D.H. Kim VISCORS: a visual-content recommender for the mobile Web IEEE Intelligent Systems 19 6 2004 32 39
    • (2004) IEEE Intelligent Systems , vol.19 , Issue.6 , pp. 32-39
    • Kim, C.Y.1    Lee, J.K.2    Cho, Y.H.3    Kim, D.H.4
  • 18
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • G. Linden, B. Smith, and J. York Amazon.com recommendations: item-to-item collaborative filtering IEEE Internet Computing 7 1 2003 210 217
    • (2003) IEEE Internet Computing , vol.7 , Issue.1 , pp. 210-217
    • Linden, G.1    Smith, B.2    York, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.