메뉴 건너뛰기




Volumn 26, Issue 3, 2008, Pages

Unified relevance models for rating prediction in collaborative filtering

Author keywords

Collaborative filtering; Personalization; Recommendation

Indexed keywords

COLLABORATIVE FILTERING (CF); COSINE SIMILARITY; DATA DRIVEN (DD); DATA SPARSITY; DENSITY ESTIMATION; DIFFERENT TYPES; EUCLIDEAN DISTANCE (ED); EXPERIMENTAL RESULTS; FILTERINGS; GAUSSIAN WINDOW; NON-PARAMETRIC; PARTIAL VIEWS; PREDICTION ACCURACY; PREDICTION PROBLEM; PROBABILITY DENSITIES; RECOMMENDER SYSTEMS; RELEVANCE MODELS; RETRIEVAL (MIR); TEXT RETRIEVAL; UNIFIED MODELING; USER PROFILING; USERS' INTERESTS; WINDOW METHODS;

EID: 46249131793     PISSN: 10468188     EISSN: 15582868     Source Type: Journal    
DOI: 10.1145/1361684.1361689     Document Type: Article
Times cited : (73)

References (52)
  • 1
    • 0032754571 scopus 로고    scopus 로고
    • A re-unification of two competing models for document retrieval
    • BODOFF, D. 1999. A re-unification of two competing models for document retrieval. J Amer. Soc. Inf. Sci. 50, 1, 49-64.
    • (1999) J Amer. Soc. Inf. Sci , vol.50 , Issue.1 , pp. 49-64
    • BODOFF, D.1
  • 5
    • 3843093841 scopus 로고    scopus 로고
    • Learning user similarity and rating style for collaborative recommendation
    • CHEUNG, K.-W. AND TIAN, L. F. 2004. Learning user similarity and rating style for collaborative recommendation. Inf. Retr. 7, 3-4, 395-410.
    • (2004) Inf. Retr , vol.7 , Issue.3-4 , pp. 395-410
    • CHEUNG, K.-W.1    TIAN, L.F.2
  • 6
    • 46249129932 scopus 로고    scopus 로고
    • EachMovie dataset
    • COMPAQ. 1997. EachMovie dataset. EachMovie: http://research. compaq.com/SRC/eachmovie/.
    • (1997) EachMovie
  • 8
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • DEMPSTER, A. P., LAIRD, N. M., AND RUBIN, D. B. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statist. Soc. 39, 1, 1-38.
    • (1977) J. Royal Statist. Soc , vol.39 , Issue.1 , pp. 1-38
    • DEMPSTER, A.P.1    LAIRD, N.M.2    RUBIN, D.B.3
  • 9
    • 3042821101 scopus 로고    scopus 로고
    • Item-Based top-n recommendation algorithms
    • DESHPANDE, M. AND KARYPIS, G. 2004. Item-Based top-n recommendation algorithms. ACM Trans. Inf. Syst. 22, 1, 143-177.
    • (2004) ACM Trans. Inf. Syst , vol.22 , Issue.1 , pp. 143-177
    • DESHPANDE, M.1    KARYPIS, G.2
  • 11
    • 0017017305 scopus 로고
    • On the choice of smoothing parameters for Parzen estimators of probability density functions
    • DUIN, R. P. W. 1976. On the choice of smoothing parameters for Parzen estimators of probability density functions. IEEE Trans. Comput. C-25, 1175-1179.
    • (1976) IEEE Trans. Comput , vol.C-25 , pp. 1175-1179
    • DUIN, R.P.W.1
  • 12
    • 0002549585 scopus 로고    scopus 로고
    • GOLDBERG, K., ROEDER, T., GUPTA, D., AND PERKINS, C. 2001. Eigentaste: A constant time collaborative filtering algorithm. Inf. Retr. J 4, 2 (Jul.), 133-151.
    • GOLDBERG, K., ROEDER, T., GUPTA, D., AND PERKINS, C. 2001. Eigentaste: A constant time collaborative filtering algorithm. Inf. Retr. J 4, 2 (Jul.), 133-151.
  • 13
    • 46249093582 scopus 로고    scopus 로고
    • EachMovil, datadet
    • GROUPLENS. 2003. EachMovil, datadet. MovieLens: http://www.grouplens.org/.
    • (2003) MovieLens
  • 17
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • HOFMANN, T. 2004. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. 22, 1, 89-115.
    • (2004) ACM Trans. Inf. Syst , vol.22 , Issue.1 , pp. 89-115
    • HOFMANN, T.1
  • 18
    • 46449092708 scopus 로고    scopus 로고
    • A hybrid user and item-based collaborative filtering with smoothing on sparse data
    • 0. 184-189
    • HU, R. AND LU, Y. 2006. A hybrid user and item-based collaborative filtering with smoothing on sparse data. In icat 0. 184-189.
    • (2006) icat
    • HU, R.1    LU, Y.2
  • 19
    • 3042819722 scopus 로고    scopus 로고
    • Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
    • HUANG, Z., CHEN, H., AND ZENG, D. 2004. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Trans. Inf. Syst. 22, 1, 116-142.
    • (2004) ACM Trans. Inf. Syst , vol.22 , Issue.1 , pp. 116-142
    • HUANG, Z.1    CHEN, H.2    ZENG, D.3
  • 23
    • 8644280930 scopus 로고    scopus 로고
    • Probabilistic relevance models based on document and query generation
    • W. B. Croft and J. Lafferty, Eds. Kluwer Academic
    • LAFFERTY, J. AND ZHAI, C. 2003. Probabilistic relevance models based on document and query generation. In Language Modeling for Information Retrieval, W. B. Croft and J. Lafferty, Eds. Kluwer Academic, vol. 13, 1-10.
    • (2003) Language Modeling for Information Retrieval , vol.13 , pp. 1-10
    • LAFFERTY, J.1    ZHAI, C.2
  • 24
    • 29144462256 scopus 로고    scopus 로고
    • Ph.D. thesis, University of Massachusetts Amherst. Director-W. B. Croft and Director-J. Allan
    • LAVRENKO, V. 2004. A generative theory of relevance. Ph.D. thesis, University of Massachusetts Amherst. Director-W. B. Croft and Director-J. Allan.
    • (2004) A generative theory of relevance
    • LAVRENKO, V.1
  • 26
    • 0037252945 scopus 로고    scopus 로고
    • LINDEN, G., SMITH, B., AND YORK, J. 2003. Amazon.com recommendations: Item-to-Item collaborative filtering. IEEE Internet Comput. (Jan./Feb.), 76-80.
    • LINDEN, G., SMITH, B., AND YORK, J. 2003. Amazon.com recommendations: Item-to-Item collaborative filtering. IEEE Internet Comput. (Jan./Feb.), 76-80.
  • 27
    • 0742307398 scopus 로고    scopus 로고
    • Improving kernel fisher discriminant analysis for face recognition
    • LIU, Q., LU, H., AND MA, S. 2004. Improving kernel fisher discriminant analysis for face recognition. IEEE Trans. Circ. Syst. Video Technol. 14, 1, 42-49.
    • (2004) IEEE Trans. Circ. Syst. Video Technol , vol.14 , Issue.1 , pp. 42-49
    • LIU, Q.1    LU, H.2    MA, S.3
  • 28
    • 84945708697 scopus 로고
    • On relevance, probabilistic indexing and information retrieval
    • MARON, M. E. AND KUHNS, J. L. 1960. On relevance, probabilistic indexing and information retrieval. J. ACM 7, 3, 216-244.
    • (1960) J. ACM , vol.7 , Issue.3 , pp. 216-244
    • MARON, M.E.1    KUHNS, J.L.2
  • 29
    • 0342955022 scopus 로고    scopus 로고
    • Road sign classification using Laplace kernel classifier
    • PACLIK, P., NOVOVICOVA, J., PUDIL, P., AND SOMOL, P. 2000. Road sign classification using Laplace kernel classifier. Pattern Recogn. Lett. 21, 13-14, 1165-1173.
    • (2000) Pattern Recogn. Lett , vol.21 , Issue.13-14 , pp. 1165-1173
    • PACLIK, P.1    NOVOVICOVA, J.2    PUDIL, P.3    SOMOL, P.4
  • 35
    • 0017630891 scopus 로고
    • J. Document. 33
    • 4Dec
    • ROBERTSON, S. E. 1977. The probability ranking principle in IR. J. Document. 33, 4(Dec.), 294-304.
    • (1977) , pp. 294-304
    • ROBERTSON, S.E.1
  • 36
    • 17144384765 scopus 로고    scopus 로고
    • On event spaces and probabilistic models in information retrieval
    • ROBERTSON, S. E. 2005. On event spaces and probabilistic models in information retrieval. Inf. Retr. 8, 2, 319-329.
    • (2005) Inf. Retr , vol.8 , Issue.2 , pp. 319-329
    • ROBERTSON, S.E.1
  • 37
    • 0002004161 scopus 로고
    • Probability of relevance: A unification of two competing models for document retrieval
    • ROBERTSON, S. E., MARON, M. E., AND COOPER, W. 1982. Probability of relevance: A unification of two competing models for document retrieval. Inf. Technol. Res. Devel. 1, 1, 1-21.
    • (1982) Inf. Technol. Res. Devel , vol.1 , Issue.1 , pp. 1-21
    • ROBERTSON, S.E.1    MARON, M.E.2    COOPER, W.3
  • 46
    • 46249114558 scopus 로고
    • Effect of the kernel function form on the quality of nonparametric Parzen window classifier
    • SKURICHINA, M. 1990. Effect of the kernel function form on the quality of nonparametric Parzen window classifier. Statist. Problems Control 95, 216-244.
    • (1990) Statist. Problems Control , vol.95 , pp. 216-244
    • SKURICHINA, M.1
  • 47
    • 36048962628 scopus 로고    scopus 로고
    • Estimating Gaussian mixture densities with EM: A tutorial
    • Tech. Rep, Duke University
    • TOMASI, C. 2004. Estimating Gaussian mixture densities with EM: A tutorial. Tech. Rep., Duke University. http://www.cs.duke.edu/courses/ spring04/cps196.1/handouts/EM/tomasiEM.pdf.
    • (2004)
    • TOMASI, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.