메뉴 건너뛰기




Volumn 38, Issue 3, 2011, Pages 192-197

Artificial neural network prediction to the hot compressive deformation behavior of Al-Cu-Mg-Ag heat-resistant aluminum alloy

Author keywords

Al Cu Mg Ag alloys; Artificial neural network; Constitutive equations; Flow stress; Hot compression deformation

Indexed keywords

AL-CU-MG-AG; AL-CU-MG-AG ALLOY; ANALYSIS AND SIMULATION; ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORK MODELS; FLOW BEHAVIORS; FLOW STRESS; HEAT-RESISTANT ALUMINUM ALLOY; HOT COMPRESSION; HOT COMPRESSION DEFORMATION; HOT COMPRESSIVE DEFORMATION BEHAVIOR; THERMAL SIMULATION TEST;

EID: 79955633368     PISSN: 00936413     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.mechrescom.2011.02.015     Document Type: Article
Times cited : (44)

References (15)
  • 1
    • 0033078679 scopus 로고    scopus 로고
    • Using neural networks to predict parameters in the hot working of aluminum alloys
    • PII S0924013698003185
    • M.S. Chuan, J. Biglou, J.G. Lenard, and J.G. Kim Using neural networks to predict parameters in the hot working of aluminum alloys J. Mater. Process. Technol. 86 1999 245 251 (Pubitemid 128350081)
    • (1999) Journal of Materials Processing Technology , vol.86 , Issue.1-3 , pp. 245-251
    • Chun, M.S.1    Biglou, J.2    Lenard, J.G.3    Kim, J.G.4
  • 2
    • 0026970839 scopus 로고
    • New formula for calculating flow curves from high temperature constitutive data for 300 austenitic steels
    • DOI 10.1016/0924-0136(92)90236-L
    • A. Cingara, and H.J. McQueen New formula for calculating flow curves from high temperature constitutive data for 300 austenitic steels J. Mater. Process. Technol. 36 1992 31 42 (Pubitemid 23619085)
    • (1992) Journal of Materials Processing Technology , vol.36 , Issue.1 , pp. 31-42
    • Cingara, A.1    McQueen, H.J.2
  • 3
    • 33947148635 scopus 로고    scopus 로고
    • Microstructure and creep behaviour of an Osprey processed and extruded Al-Cu-Mg-Ti-Ag alloy
    • DOI 10.1016/j.jallcom.2006.06.031, PII S092583880600733X
    • M. Eddahbi, J.A. Jiménez, and O.A. Ruano Microstructure and creep behaviour of an Osprey processed and extruded Al-Cu-Mg-Ti-Ag alloy J. Alloys Compd. 433 2007 97 107 (Pubitemid 46412903)
    • (2007) Journal of Alloys and Compounds , vol.433 , Issue.1-2 , pp. 97-107
    • Eddahbi, M.1    Jimenez, J.A.2    Ruano, O.A.3
  • 4
    • 0023862814 scopus 로고
    • A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable
    • DOI 10.1016/0001-6160(88)90030-2
    • P.S. Follansbee, and U.F. Kocks A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable Acta Metall. Sin. 36 1988 81 93 (Pubitemid 18626871)
    • (1988) Acta Metallurgica , vol.36 , Issue.1 , pp. 81-93
    • Follansbee, P.S.1    Kocks, U.F.2
  • 5
    • 60449083177 scopus 로고    scopus 로고
    • The prediction of hot flow behavior of Al-6%Mg alloy
    • A. Gholamzadeh, and A. Karimi Taheri The prediction of hot flow behavior of Al-6%Mg alloy Mech. Res. Commun. 36 2009 252 259
    • (2009) Mech. Res. Commun. , vol.36 , pp. 252-259
    • Gholamzadeh, A.1    Karimi Taheri, A.2
  • 6
    • 58149145882 scopus 로고    scopus 로고
    • Prediction of density, porosity and hardness in aluminum-copper-based composite materials using artificial neural network
    • A.M. Hassan, A. Alrashdan, M.T. Hayajneh, and A.T. Mayyas Prediction of density, porosity and hardness in aluminum-copper-based composite materials using artificial neural network J. Mater. Process. Technol. 209 2009 894 899
    • (2009) J. Mater. Process. Technol. , vol.209 , pp. 894-899
    • Hassan, A.M.1    Alrashdan, A.2    Hayajneh, M.T.3    Mayyas, A.T.4
  • 7
    • 55649109830 scopus 로고    scopus 로고
    • A method to predict flow stress considering dynamic recrystallization during hot deformation
    • X. He, Z. Yu, and X. Lai A method to predict flow stress considering dynamic recrystallization during hot deformation Comput. Mater. Sci. 44 2008 760 764
    • (2008) Comput. Mater. Sci. , vol.44 , pp. 760-764
    • He, X.1    Yu, Z.2    Lai, X.3
  • 8
    • 51249171184 scopus 로고
    • Prediction of the steel flow stresses at high temperatures and strain rate
    • A. Lassraoui, and J.J. Jonas Prediction of the steel flow stresses at high temperatures and strain rate Metall. Mater. Trans. A 22 1991 1545 1558
    • (1991) Metall. Mater. Trans. A , vol.22 , pp. 1545-1558
    • Lassraoui, A.1    Jonas, J.J.2
  • 9
    • 52949098334 scopus 로고    scopus 로고
    • Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel
    • Y.C. Lin, J. Zhang, and J. Zhong Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel Comput. Mater. Sci. 43 2008 752 758
    • (2008) Comput. Mater. Sci. , vol.43 , pp. 752-758
    • Lin, Y.C.1    Zhang, J.2    Zhong, J.3
  • 10
    • 53749085067 scopus 로고    scopus 로고
    • Artificial neural network modeling to evaluate and predict the deformation behavior of stain less steel type AISI 304L during hot torsion
    • S. Mandal, P.V. Sivaprasad, S. Venugopal, and K.P.N. Murthy Artificial neural network modeling to evaluate and predict the deformation behavior of stain less steel type AISI 304L during hot torsion Appl. Soft Comput. 9 2009 237 244
    • (2009) Appl. Soft Comput. , vol.9 , pp. 237-244
    • Mandal, S.1    Sivaprasad, P.V.2    Venugopal, S.3    Murthy, K.P.N.4
  • 11
    • 0041691046 scopus 로고    scopus 로고
    • The applicability of neural network model to predict flow stress for carbon steel
    • M.P. Phaniraj, and A.K. Lahiri The applicability of neural network model to predict flow stress for carbon steel J. Mater. Process. Technol. 141 2003 219 227
    • (2003) J. Mater. Process. Technol. , vol.141 , pp. 219-227
    • Phaniraj, M.P.1    Lahiri, A.K.2
  • 12
    • 0022700150 scopus 로고
    • Design development of an experimental wrought aluminum alloy for use at elevated temperatures
    • I.J. Polmear, and M.J. Couper Design development of an experimental wrought aluminum alloy for use at elevated temperatures Metall. Mater. Trans. A 19 1988 1027 1034
    • (1988) Metall. Mater. Trans. A , vol.19 , pp. 1027-1034
    • Polmear, I.J.1    Couper, M.J.2
  • 13
    • 0026747220 scopus 로고
    • Assessment of simple flow-stress relationships using literature data for a range of steels
    • K.P. Rao, and E.B. Hawbolt Assessment of simple flow stress relationship using literature data for a range of steels J. Mater. Process. Technol. 29 1992 15 40 (Pubitemid 23585455)
    • (1992) Journal of Materials Processing Technology , vol.29 , Issue.1-3 , pp. 15-40
    • Rao, K.P.1    Hawbolt, E.B.2
  • 14
    • 33644636765 scopus 로고    scopus 로고
    • A comparative analysis of training methods for artificial neural network rainfall-runoff models
    • DOI 10.1016/j.asoc.2005.02.002, PII S1568494605000190
    • S. Srinivasulu, and A. Jain A comparative analysis of training methods for artificial neural network rainfall-runoff models Appl. Soft Comput. 6 2006 295 306 (Pubitemid 43326128)
    • (2006) Applied Soft Computing Journal , vol.6 , Issue.3 , pp. 295-306
    • Srinivasulu, S.1    Jain, A.2
  • 15
    • 11544314967 scopus 로고    scopus 로고
    • Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures
    • PII S092401369800154X
    • H. Takuda, H. Fujimoto, and N. Hatta Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures J. Mater. Process. Technol. 80 1998 513 516 (Pubitemid 128639054)
    • (1998) Journal of Materials Processing Technology , vol.80-81 , pp. 513-516
    • Takuda, H.1    Fujimoto, H.2    Hatta, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.