-
4
-
-
0003861074
-
-
Ed.; Academic Press: London
-
Tadros, R. F., Ed.; Surfactants; Academic Press: London, 1985.
-
(1985)
Surfactants
-
-
Tadros, R.F.1
-
11
-
-
33751392570
-
-
Nikas, Y. J.; Puvada, S.; Blankschtein, D. Langmuir 1992, 8, 2680-2689
-
(1992)
Langmuir
, vol.8
, pp. 2680-2689
-
-
Nikas, Y.J.1
Puvada, S.2
Blankschtein, D.3
-
15
-
-
33644542771
-
-
Stephenson, B. C.; Beers, K.; Blankschtein, D. Langmuir 2006, 22, 1500-1513
-
(2006)
Langmuir
, vol.22
, pp. 1500-1513
-
-
Stephenson, B.C.1
Beers, K.2
Blankschtein, D.3
-
16
-
-
33644517923
-
-
Stephenson, B. C.; Rangel-Yagui, C. O.; Pessoa, A.; Tavares, L. C.; Beers, K. J.; Blankschtein, D. Langmuir 2006, 22, 1514-1525
-
(2006)
Langmuir
, vol.22
, pp. 1514-1525
-
-
Stephenson, B.C.1
Rangel-Yagui, C.O.2
Pessoa, A.3
Tavares, L.C.4
Beers, K.J.5
Blankschtein, D.6
-
17
-
-
39849107476
-
-
Stephenson, B. C.; Stafford, K. A.; Beers, K. J.; Blankschtein, D. J. Phys. Chem. B 2008, 112, 1634-1640
-
(2008)
J. Phys. Chem. B
, vol.112
, pp. 1634-1640
-
-
Stephenson, B.C.1
Stafford, K.A.2
Beers, K.J.3
Blankschtein, D.4
-
18
-
-
39849095723
-
-
Stephenson, B. C.; Stafford, K. A.; Beers, K. J.; Blankschtein, D. J. Phys. Chem. B 2008, 112, 1641-1656
-
(2008)
J. Phys. Chem. B
, vol.112
, pp. 1641-1656
-
-
Stephenson, B.C.1
Stafford, K.A.2
Beers, K.J.3
Blankschtein, D.4
-
19
-
-
0037023054
-
-
Maiti, P. K.; Lansac, Y.; Glaser, M. A.; Clark, N. A.; Rouault, Y. Langmuir 2002, 18, 1908-1918
-
(2002)
Langmuir
, vol.18
, pp. 1908-1918
-
-
Maiti, P.K.1
Lansac, Y.2
Glaser, M.A.3
Clark, N.A.4
Rouault, Y.5
-
20
-
-
33748266722
-
-
Shi, Q.; Izvekov, S.; Voth, G. A. J. Phys. Chem. B 2006, 31, 15045-15048
-
(2006)
J. Phys. Chem. B
, vol.31
, pp. 15045-15048
-
-
Shi, Q.1
Izvekov, S.2
Voth, G.A.3
-
21
-
-
37349025457
-
-
Wang, Y.; Jiang, W.; Yan, T.; Voth, G. A. Acc. Chem. Res. 2007, 40, 1193-1199
-
(2007)
Acc. Chem. Res.
, vol.40
, pp. 1193-1199
-
-
Wang, Y.1
Jiang, W.2
Yan, T.3
Voth, G.A.4
-
22
-
-
34547474332
-
-
Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; de Vries, A. H. J. Phys. Chem. B 2007, 111, 7812-7824
-
(2007)
J. Phys. Chem. B
, vol.111
, pp. 7812-7824
-
-
Marrink, S.J.1
Risselada, H.J.2
Yefimov, S.3
Tieleman, D.P.4
De Vries, A.H.5
-
23
-
-
49449113010
-
-
Monticelli, L.; Kandasamy, S. K.; Periole, X.; Larson, R. G.; Tieleman, D. P.; Marrink, S. J. J. Chem. Theory Comput. 2008, 4, 819-834
-
(2008)
J. Chem. Theory Comput.
, vol.4
, pp. 819-834
-
-
Monticelli, L.1
Kandasamy, S.K.2
Periole, X.3
Larson, R.G.4
Tieleman, D.P.5
Marrink, S.J.6
-
24
-
-
31444433207
-
-
Srinivas, G.; Nielsen, S. O.; Moore, P. B.; Klein, M. L. J. Am. Chem. Soc. 2006, 128, 848-853
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 848-853
-
-
Srinivas, G.1
Nielsen, S.O.2
Moore, P.B.3
Klein, M.L.4
-
25
-
-
4344613490
-
-
Jang, S. S.; Lin, S. T.; Maiti, P. K.; Blanco, M.; Goddard, W. A., III; Shuler, P.; Tang, Y. J. Phys. Chem. B 2004, 108, 12130-12140
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 12130-12140
-
-
Jang, S.S.1
Lin, S.T.2
Maiti, P.K.3
Blanco, M.4
Goddard III, W.A.5
Shuler, P.6
Tang, Y.7
-
30
-
-
0141939464
-
-
Rekvig, L.; Kranenburg, M.; Vreede, J.; Hafskjold, B.; Smit, B. Langmuir 2003, 19, 8195-8205
-
(2003)
Langmuir
, vol.19
, pp. 8195-8205
-
-
Rekvig, L.1
Kranenburg, M.2
Vreede, J.3
Hafskjold, B.4
Smit, B.5
-
31
-
-
11144220470
-
-
Rekvig, L.; Hafskjold, B.; Smit, B. Langmuir 2004, 20, 11583-11593
-
(2004)
Langmuir
, vol.20
, pp. 11583-11593
-
-
Rekvig, L.1
Hafskjold, B.2
Smit, B.3
-
36
-
-
0003457380
-
-
Chapman and Hall: London
-
Fleer, G. J.; Cohen-Stuart, M. A.; Scheutjens, J. M. H. M.; Cosgrove, T.; Vincent, B. Polymers at Interfaces; Chapman and Hall: London, 1993.
-
(1993)
Polymers at Interfaces
-
-
Fleer, G.J.1
Cohen-Stuart, M.A.2
Scheutjens, J.M.H.M.3
Cosgrove, T.4
Vincent, B.5
-
37
-
-
11644285731
-
-
references therein
-
Lyatskaya, Y.; Gersappe, D.; Gross, N.; Balazs, A. C. J. Phys. Chem. 1996, 100, 1449-1458 and references therein
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 1449-1458
-
-
Lyatskaya, Y.1
Gersappe, D.2
Gross, N.3
Balazs, A.C.4
-
42
-
-
0032737269
-
-
Lyu, S.; Chernohous, J. J.; Bates, F. S.; Macosko, C. W. Macromolecules 1999, 32, 106-110
-
(1999)
Macromolecules
, vol.32
, pp. 106-110
-
-
Lyu, S.1
Chernohous, J.J.2
Bates, F.S.3
MacOsko, C.W.4
-
45
-
-
0038204627
-
-
Cheng, M. H.; Balazs, A. C.; Yeung, C.; Ginzburg, V. V. J. Chem. Phys. 2003, 118, 9044-9052
-
(2003)
J. Chem. Phys.
, vol.118
, pp. 9044-9052
-
-
Cheng, M.H.1
Balazs, A.C.2
Yeung, C.3
Ginzburg, V.V.4
-
51
-
-
84906390138
-
-
Calculated interfacial tensions are very sensitive to the choice of the Flory-Huggins parameters, as one would naturally expect. We found, e.g., that changing π(C-E) or π(E-W) by 15-20% of their values could shift the IFT vs surfactant concentration curve to the left (lower concentrations) or right (higher concentrations) by as much as 1 order of magnitude
-
Calculated interfacial tensions are very sensitive to the choice of the Flory-Huggins parameters, as one would naturally expect. We found, e.g., that changing π(C-E) or π(E-W) by 15-20% of their values could shift the IFT vs surfactant concentration curve to the left (lower concentrations) or right (higher concentrations) by as much as 1 order of magnitude.
-
-
-
-
52
-
-
84906404805
-
-
y = 2 makes all calculations essentially one-dimensional
-
y = 2 makes all calculations essentially one-dimensional.
-
-
-
-
53
-
-
84906390139
-
-
-4), it becomes difficult to achieve equilibrium in pendant drop IFT measurements. Indeed, once all surfactants available near the oil drop are consumed to build a monolayer at the oil/water interface, those molecules in the interfacial monolayer will be continuously leached out into the drop phase. Thermodynamic equilibrium in the system will be only obtained when the entire oil drop is saturated with surfactants at equilibrium level. This process is essentially diffusion-controlled and the time to reach equilibrium may become prohibitively long as the oil drop volume increases with decreasing interfacial tension. During the transient period, the reproducibility of the data will be greatly influenced by total experimental time and the initial condition, e.g., oil drop size.
-
-4), it becomes difficult to achieve equilibrium in pendant drop IFT measurements. Indeed, once all surfactants available near the oil drop are consumed to build a monolayer at the oil/water interface, those molecules in the interfacial monolayer will be continuously leached out into the drop phase. Thermodynamic equilibrium in the system will be only obtained when the entire oil drop is saturated with surfactants at equilibrium level. This process is essentially diffusion-controlled and the time to reach equilibrium may become prohibitively long as the oil drop volume increases with decreasing interfacial tension. During the transient period, the reproducibility of the data will be greatly influenced by total experimental time and the initial condition, e.g., oil drop size. Therefore, expanding the experiment over the broader range of surfactant concentration will result in a nontrivial issue regarding reduced data accuracy. For more details, see Supporting Information.
-
-
-
-
55
-
-
12444272525
-
-
Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309-319
-
(1938)
J. Am. Chem. Soc.
, vol.60
, pp. 309-319
-
-
Brunauer, S.1
Emmett, P.H.2
Teller, E.3
|