-
1
-
-
0022492943
-
The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry
-
Nigmatullin, R. R., The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry, Physica Status Solidi (B) Basic Research, 133 (1986), 1, pp. 425-430.
-
(1986)
Physica Status Solidi (B) Basic Research
, vol.133
, Issue.1
, pp. 425-430
-
-
Nigmatullin, R.R.1
-
2
-
-
33845735987
-
Sub- and Superdiffusion Molecular Displacement Laws in Disordered Porous Media Probed by Nuclear Magnetic Resonance
-
article 066309
-
Li, Y., G. Farrher, G., Kimmich, R., Sub- and Superdiffusion Molecular Displacement Laws in Disordered Porous Media Probed by Nuclear Magnetic Resonance, Phys. Rev. E, 74 (2006), 6, article 066309.
-
(2006)
Phys. Rev. E
, vol.74
, Issue.6
-
-
Li, Y.1
Farrher, G.2
Kimmich, G.R.3
-
3
-
-
0033986694
-
Anomalous Transport in Laboratory-Scale, Heterogeneous Porous Media
-
Berkowitz, B., Scher, H., Silliman S.E., Anomalous Transport in Laboratory-Scale, Heterogeneous Porous Media, Water Resources Research, 36 (2000), 1, pp. 149-158.
-
(2000)
Water Resources Research
, vol.36
, Issue.1
, pp. 149-158
-
-
Berkowitz, B.1
Scher, H.2
Silliman, S.E.3
-
4
-
-
59649090688
-
Exploring the Nature of Non-Fickian Transport in Laboratory Experiments
-
Berkowitz, B., Scher, H., Exploring the Nature of Non-Fickian Transport in Laboratory Experiments, Advances in Water Resources, 32 (2009), 5, pp. 750-755.
-
(2009)
Advances in Water Resources
, vol.32
, Issue.5
, pp. 750-755
-
-
Berkowitz, B.1
Scher, H.2
-
5
-
-
33947388398
-
Fractal Properties of Anomalous Diffusion in Intermittent Maps
-
1539-3755/2007/75(3)/036213(14)
-
Korabel, N., et al., Fractal Properties of Anomalous Diffusion in Intermittent Maps, Physical Review E, 75 (2007), 1539-3755/2007/75(3)/036213(14).
-
(2007)
Physical Review E
, vol.75
-
-
Korabel, N.1
-
6
-
-
48549089806
-
Subdiffusion in a System with a Thick Membrane
-
doi:10.1016/j.memsci.2008.04.028
-
Kosztołowicz, T., Subdiffusion in a System with a Thick Membrane, Journal of Membrane Science, 320 (2008), 1-2, pp. 492-499, doi:10.1016/j.memsci.2008.04.028.
-
(2008)
Journal of Membrane Science
, vol.320
, Issue.1-2
, pp. 492-499
-
-
Kosztołowicz, T.1
-
7
-
-
67349234502
-
Fractional Kinetics in Drug Aabsorption and Disposition Processes
-
Dokoumetzidis, A., Macheras, P., Fractional Kinetics in Drug Aabsorption and Disposition Processes, J. Pharmacokinetics and Pharmacodynamics, 36 (2009), 2, pp. 165-178.
-
(2009)
J. Pharmacokinetics and Pharmacodynamics
, vol.36
, Issue.2
, pp. 165-178
-
-
Dokoumetzidis, A.1
Macheras, P.2
-
8
-
-
3543083566
-
Anomalous Heat Conduction and Anomalous Diffusion in One-Dimensional Systems
-
Li, B, Wang, J., Anomalous Heat Conduction and Anomalous Diffusion in One-Dimensional Systems, Physical Review Letters, 91 (2003), 4, pp. 044301-1-4.
-
(2003)
Physical Review Letters
, vol.91
, Issue.4
, pp. 0443011-0443014
-
-
Li, B.1
Wang, J.2
-
9
-
-
0002641421
-
The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach
-
Metzler, R., Klafter, J., The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach, Physics Report, 39 (2000), 1, pp. 1-77.
-
(2000)
Physics Report
, vol.39
, Issue.1
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
10
-
-
4043151477
-
The Restaurant at the End of the Random Walk: Recent Developments in the Description of Anomalous Transport by Fractional Dynamics
-
Metzler, R., Klafter, J., The Restaurant at the End of the Random Walk: Recent Developments in the Description of Anomalous Transport by Fractional Dynamics, Journal of Physics A, 37 (2004), 31, pp. 161-208.
-
(2004)
Journal of Physics A
, vol.37
, Issue.31
, pp. 161-208
-
-
Metzler, R.1
Klafter, J.2
-
11
-
-
77958074894
-
Fractional Models: Sub and Super-Diffusive, and Undifferentiable Solutions
-
(eds. B. H. V. Topping, G. Montero, R. Montenegro), Saxe-Coburg Publ., Stirlingshire, UK
-
Trujillo, J., Fractional Models: Sub and Super-Diffusive, and Undifferentiable Solutions, in: Innovation in Engineering Computational Technology (eds. B. H. V. Topping, G. Montero, R. Montenegro), Saxe-Coburg Publ., Stirlingshire, UK, 2006, pp. 371-402.
-
(2006)
Innovation in Engineering Computational Technology
, pp. 371-402
-
-
Trujillo, J.1
-
12
-
-
38549182434
-
Effective Diffusion in Partially Filled Nanoscopic and Microscopic Pores
-
Ardelean, I., Farrher, G., Kimmich, R., Effective Diffusion in Partially Filled Nanoscopic and Microscopic Pores, Journal of Optoelectronics and Advanced Materials, 9 (2007), 3, pp. 655-660.
-
(2007)
Journal of Optoelectronics and Advanced Materials
, vol.9
, Issue.3
, pp. 655-660
-
-
Ardelean, I.1
Farrher, G.2
Kimmich, R.3
-
13
-
-
79951781633
-
Overview to Mathematical Analysis for Fractional Diffusion Equations-New Mathematical Aspects Motivated by Industrial Collaboration
-
Nakagawa, J., Sakamoto, K., Yamamoto, M., Overview to Mathematical Analysis for Fractional Diffusion Equations-New Mathematical Aspects Motivated by Industrial Collaboration, Journal of Math-for-Industry, Vol. 2 (2010A-10), pp. 99-108.
-
Journal of Math-for-Industry
, vol.2
, Issue.2010A10
, pp. 99-108
-
-
Nakagawa, J.1
Sakamoto, K.2
Yamamoto, M.3
-
14
-
-
2942741370
-
Fractional Radial Diffusion in a Cylinder
-
Narahari Achar, B. N., Hanneken, J. W., Fractional Radial Diffusion in a Cylinder, Journal of Molecular Liquids, 114 (2004), 1, pp. 147-151.
-
(2004)
Journal of Molecular Liquids
, vol.114
, Issue.1
, pp. 147-151
-
-
Narahari Achar, B.N.1
Hanneken, J.W.2
-
15
-
-
53549087275
-
Similarity Solutions to Non-linear Heat Conduction and Burgers/Korteweg-deVries Fractional Equations
-
Djordjević, V. D., Atanacković, T. M., Similarity Solutions to Non-linear Heat Conduction and Burgers/Korteweg-deVries Fractional Equations, Journal of Computational and Applied Mathematics, 222 (2008), 2, pp. 701-714.
-
(2008)
Journal of Computational and Applied Mathematics
, vol.222
, Issue.2
, pp. 701-714
-
-
Djordjević, V.D.1
Atanacković, T.M.2
-
16
-
-
33646371459
-
Solution of a Modified Fractional Diffusion Equation
-
doi:10.1016/j.physa.2005.12.012
-
Langlands, T. A. M., Solution of a Modified Fractional Diffusion Equation, Physica A, 367 (2006), 15, pp. 136-144, doi:10.1016/j.physa.2005.12.012.
-
(2006)
Physica A
, vol.367
, Issue.15
, pp. 136-144
-
-
Langlands, T.A.M.1
-
17
-
-
3543057582
-
Solution of Boundary Value Problems for the Fractional Diffusion Equation by the Green Function Method
-
Pskhu, A. V., Solution of Boundary Value Problems for the Fractional Diffusion Equation by the Green Function Method, Differential Equations (Russia), 39 (2003), 10, pp. 1509-1513.
-
(2003)
Differential Equations (Russia)
, vol.39
, Issue.10
, pp. 1509-1513
-
-
Pskhu, A.V.1
-
18
-
-
0029288243
-
The Exact Solution of Certain Differential Equations of Fractional Order by Using Operational Calculus
-
Luchko, Yu. F., Srivastava, H. M., The Exact Solution of Certain Differential Equations of Fractional Order by Using Operational Calculus, Computers and Math. Application, 29 (1995), 8, pp. 73-85.
-
(1995)
Computers and Math. Application
, vol.29
, Issue.8
, pp. 73-85
-
-
Luchko, Y.F.1
Srivastava, H.M.2
-
19
-
-
10644238068
-
Algorithms for the Fractional Calculus: a Selection of Numerical Methods
-
doi:10.1016/j.cma.2004.06.006
-
Diethelm, K., et al., Algorithms for the Fractional Calculus: a Selection of Numerical Methods, Computer Methods in Applied Mechanics and Engineering, 194 (2005), 6-8, pp. 743-773, doi:10.1016/j.cma.2004.06.006.
-
(2005)
Computer Methods in Applied Mechanics and Engineering
, vol.194
, Issue.6-8
, pp. 743-773
-
-
Diethelm, K.1
-
20
-
-
0032307661
-
Approximate Analytical Solution for Seepage Flow with Fractional Derivatives in Porous Media
-
He, J.-H. Approximate Analytical Solution for Seepage Flow with Fractional Derivatives in Porous Media, Computer Methods in Applied Mechanics and Engineering, 167 (1998), 1-2, pp. 57-68.
-
(1998)
Computer Methods in Applied Mechanics and Engineering
, vol.167
, Issue.1-2
, pp. 57-68
-
-
He, J.-H.1
-
21
-
-
52749093169
-
Toward a New Analytical Method for Solving Nonlinear Fractional Differential Equations
-
doi:10.1016/j.cma.2008.04.015
-
Ghorbani, A., Toward a New Analytical Method for Solving Nonlinear Fractional Differential Equations, Computer Methods in Applied Mechanics and Engineering, 197 (2008), 49-50, pp. 4173-4179. doi:10.1016/j.cma.2008.04.015.
-
(2008)
Computer Methods in Applied Mechanics and Engineering
, vol.197
, Issue.49-50
, pp. 4173-4179
-
-
Ghorbani, A.1
-
22
-
-
74449086085
-
Approximate Analytical Solution for the Fractional Modified KdV by Differential Transform Method
-
doi:10.1016/j.cnsns.2009.07.014
-
Kurulay, M., Bayram, M., Approximate Analytical Solution for the Fractional Modified KdV by Differential Transform Method, Communications in Nonlinear Science and Numerical Simulation, 15 (2009), 7, pp. 1777-1782, doi:10.1016/j.cnsns.2009.07.014.
-
(2009)
Communications in Nonlinear Science and Numerical Simulation
, vol.15
, Issue.7
, pp. 1777-1782
-
-
Kurulay, M.1
Bayram, M.2
-
23
-
-
74149088718
-
Solutions of a Fractional Oscillator by Using Differential Transform Method
-
doi:10.1016/j.camwa.2009.06.036
-
Al-Rabtah, A., Ertürk, V. S., Momani, S., Solutions of a Fractional Oscillator by Using Differential Transform Method, Computers and Mathematics with Applications, 59 (2009), 3, pp. 1356-1362, doi:10.1016/j.camwa.2009.06.036.
-
(2009)
Computers and Mathematics with Applications
, vol.59
, Issue.3
, pp. 1356-1362
-
-
Al-Rabtah, A.1
Ertürk, V.S.2
Momani, S.3
-
24
-
-
84964236688
-
The Heat Balance Integral and its Application to Problems Involving a Change of Phase
-
Goodman, T. R., The Heat Balance Integral and its Application to Problems Involving a Change of Phase, Transactions of ASME, 80 (1958), 1-2, pp. 335-342.
-
(1958)
Transactions of ASME
, vol.80
, Issue.1-2
, pp. 335-342
-
-
Goodman, T.R.1
-
25
-
-
77957068675
-
-
(Eds. T. F. Irvine, J. P. Hartnett), Advances in Heat Transfer 1, Academic Press, San Diego, Cal., USA
-
Goodman, T. R., Application of Integral Methods to Transient Nonlinear Heat Transfer (Eds. T. F. Irvine, J. P. Hartnett), Advances in Heat Transfer 1, Academic Press, San Diego, Cal., USA, 1964, pp. 51-122.
-
(1964)
Application of Integral Methods to Transient Nonlinear Heat Transfer
, pp. 51-122
-
-
Goodman, T.R.1
-
26
-
-
77955895114
-
Heat-Balance Integral to Fractional (Half-Time) Heat Diffusion Sub-Model
-
Hristov, J., Heat-Balance Integral to Fractional (Half-Time) Heat Diffusion Sub-Model, Thermal Science, 14 (2010), 2, pp. 291-316.
-
(2010)
Thermal Science
, vol.14
, Issue.2
, pp. 291-316
-
-
Hristov, J.1
-
27
-
-
77955658476
-
Time-Fractional Radial Diffusion in Hollow Geometries
-
doi 10.1007/s11012-009-9275-2
-
Qi, H., Liu, J., Time-Fractional Radial Diffusion in Hollow Geometries, Meccanica, 45 (2010), 4, pp. 577-583, doi 10.1007/s11012-009-9275-2.
-
(2010)
Meccanica
, vol.45
, Issue.4
, pp. 577-583
-
-
Qi, H.1
Liu, J.2
-
28
-
-
44649184581
-
Time-Fractional Radial Diffusion in a Sphere
-
doi 10.1007/s11071-007-9295-1
-
Povstenko, Yu., Time-Fractional Radial Diffusion in a Sphere, Nonlinear Dynamics, 53 (2008), 1-2, pp. 55-65, doi 10.1007/s11071-007-9295-1.
-
(2008)
Nonlinear Dynamics
, vol.53
, Issue.1-2
, pp. 55-65
-
-
Povstenko, Yu.1
-
29
-
-
50049102930
-
Fractional Diffusion-Wave Problem in Cylindrical Coordinates
-
doi:10.1016/j.physleta.2008.07.054
-
Ozdemir, N., Karadeniz, D., Fractional Diffusion-Wave Problem in Cylindrical Coordinates, Physics Letters A, 372 (2008), 38, pp. 5968-5972, doi:10.1016/j.physleta.2008.07.054.
-
(2008)
Physics Letters A
, vol.372
, Issue.38
, pp. 5968-5972
-
-
Ozdemir, N.1
Karadeniz, D.2
-
30
-
-
12844288249
-
Evolution of Concentration Field in a Membrane System
-
doi:10.1016/j.jbbm.2004.10.007
-
Dworecki, K., et al., Evolution of Concentration Field in a Membrane System, Journal of Biochemical and Biophysical Methods, 62 (2005), 2, pp. 153-162, doi:10.1016/j.jbbm.2004.10.007.
-
(2005)
Journal of Biochemical and Biophysical Methods
, vol.62
, Issue.2
, pp. 153-162
-
-
Dworecki, K.1
-
31
-
-
27344436094
-
Experimental Investigation of the Subdiffusion in a Membrane System
-
doi:10.1016/j.physa.2005.04.031
-
Dworecki, K., Experimental Investigation of the Subdiffusion in a Membrane System, Physica A, 359 (2006), 1-4, pp. 24-32, doi:10.1016/j.physa.2005.04.031.
-
(2006)
Physica A
, vol.359
, Issue.1-4
, pp. 24-32
-
-
Dworecki, K.1
-
32
-
-
1542436807
-
Fractal Mobile/Immobile Solute Transport
-
1296
-
Schumer, R., et al., Fractal Mobile/Immobile Solute Transport, Water Resources Research, 39 (2003), 10, 1296, pp. 13-1-12.
-
(2003)
Water Resources Research
, vol.39
, Issue.10
, pp. 13112
-
-
Schumer, R.1
-
33
-
-
70350164246
-
The Heat-Balance Integral Method by a Parabolic Profile with Unspecified Exponent: Analysis and Benchmark Exercises
-
Hristov, J., The Heat-Balance Integral Method by a Parabolic Profile with Unspecified Exponent: Analysis and Benchmark Exercises, Thermal Science, 13 (2009), 2, pp.22-48.
-
(2009)
Thermal Science
, vol.13
, Issue.2
, pp. 22-48
-
-
Hristov, J.1
-
34
-
-
70350156226
-
Research Note on a Parabolic Heat-Balance Integral Method with Unspecified Exponent: an Entropy Generation Approach in Optimal Profile Determination
-
Hristov, J., Research Note on a Parabolic Heat-Balance Integral Method with Unspecified Exponent: an Entropy Generation Approach in Optimal Profile Determination, Thermal Science, 13 (2009), 2, pp. 49.
-
(2009)
Thermal Science
, vol.13
, Issue.2
, pp. 49
-
-
Hristov, J.1
-
35
-
-
59649114537
-
Optimizing the Exponent in the Hear Balance and Refined Integral Methods
-
doi: 01016/j.icheatmasstransfer.2008.10.013
-
Myers, T., Optimizing the Exponent in the Hear Balance and Refined Integral Methods, Int. Comm. Heat Mass Transfer, 44 (2008), 2, pp. 143-147, doi: 01016/j.icheatmasstransfer.2008.10.013.
-
(2008)
Int. Comm. Heat Mass Transfer
, vol.44
, Issue.2
, pp. 143-147
-
-
Myers, T.1
-
36
-
-
72649083067
-
Optimal Exponent Heat Balance and Refined Integral Methods Applied to Stefan Problem
-
Myers, T. G., Optimal Exponent Heat Balance and Refined Integral Methods Applied to Stefan Problem, Int. J. Heat Mass Transfer, 53 (2010), 5-6, pp. 1119-1127.
-
(2010)
Int. J. Heat Mass Transfer
, vol.53
, Issue.5-6
, pp. 1119-1127
-
-
Myers, T.G.1
|