-
2
-
-
50949121966
-
An expansion formula for fractional derivatives and its applications
-
Atanackovic T.M., and Stankovic B. An expansion formula for fractional derivatives and its applications. Fract. Calculus Appl. Anal. 7 3 (2004) 365-378
-
(2004)
Fract. Calculus Appl. Anal.
, vol.7
, Issue.3
, pp. 365-378
-
-
Atanackovic, T.M.1
Stankovic, B.2
-
4
-
-
0039835768
-
Invariance of a partial differential equation of fractional order under the Lie group of scaling transformation
-
Buckwar E., and Luchko Y. Invariance of a partial differential equation of fractional order under the Lie group of scaling transformation. J. Math. Anal. Appl. 227 (1998) 81-97
-
(1998)
J. Math. Anal. Appl.
, vol.227
, pp. 81-97
-
-
Buckwar, E.1
Luchko, Y.2
-
7
-
-
51249167055
-
Is the Fourier theory of heat propagation paradoxical
-
Fichera G. Is the Fourier theory of heat propagation paradoxical. Rend. Del Circolo Mat. Palermo 41 (1992) 5-28
-
(1992)
Rend. Del Circolo Mat. Palermo
, vol.41
, pp. 5-28
-
-
Fichera, G.1
-
8
-
-
0000103589
-
Wright functions as scale-invariant solutions of the diffusion-wave equation
-
Gorenflo R., Luchko Y., and Mainardi F. Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 118 (2000) 175-191
-
(2000)
J. Comput. Appl. Math.
, vol.118
, pp. 175-191
-
-
Gorenflo, R.1
Luchko, Y.2
Mainardi, F.3
-
12
-
-
0031448497
-
Seismic pulse propagation with constant Q and stable probability distribution
-
Mainardi F. Seismic pulse propagation with constant Q and stable probability distribution. Ann. Geofis. 40 (1997) 1311-1328
-
(1997)
Ann. Geofis.
, vol.40
, pp. 1311-1328
-
-
Mainardi, F.1
-
14
-
-
13444266285
-
Symmetry group analysis of Benney system and an application for shallow-water equations
-
Ozer T. Symmetry group analysis of Benney system and an application for shallow-water equations. Mech. Res. Comm. 32 (2005) 241-254
-
(2005)
Mech. Res. Comm.
, vol.32
, pp. 241-254
-
-
Ozer, T.1
-
15
-
-
4444320902
-
On symmetry group properties and general similarity forms of the Benney equations in the Lagrangian variables
-
Ozer T. On symmetry group properties and general similarity forms of the Benney equations in the Lagrangian variables. J. Comput. Appl. Math. 169 (2004) 297-313
-
(2004)
J. Comput. Appl. Math.
, vol.169
, pp. 297-313
-
-
Ozer, T.1
-
17
-
-
0022053193
-
The general Lie group and similarity solutions for one-dimensional Vlasov-Maxwell equations
-
Roberts D. The general Lie group and similarity solutions for one-dimensional Vlasov-Maxwell equations. J. Plasma Phys. 33 (1985) 219-236
-
(1985)
J. Plasma Phys.
, vol.33
, pp. 219-236
-
-
Roberts, D.1
-
18
-
-
15544369500
-
Consistent modelling of infinite beams by fractional dynamics
-
Ruge P., and Trinks C. Consistent modelling of infinite beams by fractional dynamics. Nonlinear Dynam. 38 (2004) 267-284
-
(2004)
Nonlinear Dynam.
, vol.38
, pp. 267-284
-
-
Ruge, P.1
Trinks, C.2
-
20
-
-
0036869926
-
Treatment of Dynamic systems with fractional derivatives without evaluating memory-integrals
-
Trinks C., and Ruge P. Treatment of Dynamic systems with fractional derivatives without evaluating memory-integrals. Comput. Mech. 29 (2002) 471-476
-
(2002)
Comput. Mech.
, vol.29
, pp. 471-476
-
-
Trinks, C.1
Ruge, P.2
-
23
-
-
85031479830
-
-
L. Yuan, O.P. Agrawal, A numerical scheme for dynamic systems containing fractional derivatives, in: Proceedings of DETC'98 1998 ASME Design Engineering Technical Conferences, September 13-16, 1998, Atlanta Georgia
-
L. Yuan, O.P. Agrawal, A numerical scheme for dynamic systems containing fractional derivatives, in: Proceedings of DETC'98 1998 ASME Design Engineering Technical Conferences, September 13-16, 1998, Atlanta Georgia
-
-
-
-
24
-
-
0036554885
-
A numerical scheme for dynamic systems containing fractional derivatives
-
Yuan L., and Agrawal O.P. A numerical scheme for dynamic systems containing fractional derivatives. J. Vibration Acoustics 124 (2002) 321-324
-
(2002)
J. Vibration Acoustics
, vol.124
, pp. 321-324
-
-
Yuan, L.1
Agrawal, O.P.2
|