-
1
-
-
84981825145
-
Definition of physically consistent damping laws with fractional derivatives
-
Beyer H., and Kempfle S. Definition of physically consistent damping laws with fractional derivatives. Z. Angew. Math. Mech. 75 (1995) 623-635
-
(1995)
Z. Angew. Math. Mech.
, vol.75
, pp. 623-635
-
-
Beyer, H.1
Kempfle, S.2
-
2
-
-
84977255207
-
Linear models of dissipation whose Q is almost frequency independent: Part II
-
Caputo M. Linear models of dissipation whose Q is almost frequency independent: Part II. J. Royal Astron. Soc. 13 (1967) 529-539
-
(1967)
J. Royal Astron. Soc.
, vol.13
, pp. 529-539
-
-
Caputo, M.1
-
3
-
-
0037081673
-
Analysis of fractional differential equations
-
Diethelm K., and Ford N. Analysis of fractional differential equations. J. Math. Anal. Appl. 265 (2002) 229-248
-
(2002)
J. Math. Anal. Appl.
, vol.265
, pp. 229-248
-
-
Diethelm, K.1
Ford, N.2
-
4
-
-
32644481603
-
The time-fractional diffusion equation and fractional advection-dispersion equation
-
Huang F., and Liu F. The time-fractional diffusion equation and fractional advection-dispersion equation. ANZIAM J. 46 (2005) 1-14
-
(2005)
ANZIAM J.
, vol.46
, pp. 1-14
-
-
Huang, F.1
Liu, F.2
-
5
-
-
0030464353
-
Fractional relaxation-oscillation and fractional diffusion-wave phenomena
-
Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fract. 7 (1996) 1461-1477
-
(1996)
Chaos Solitons Fract.
, vol.7
, pp. 1461-1477
-
-
Mainardi, F.1
-
9
-
-
0021439912
-
On the appearance of the fractional derivative in the behavior of real materials
-
Torvik P.T., and Bagley R.L. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51 (1996) 294-298
-
(1996)
J. Appl. Mech.
, vol.51
, pp. 294-298
-
-
Torvik, P.T.1
Bagley, R.L.2
-
10
-
-
52749086968
-
-
L. Blank, Numerical treatment of differential equations of fractional order, Numerical Analysis Report 287, Manchester Center for Computational.
-
L. Blank, Numerical treatment of differential equations of fractional order, Numerical Analysis Report 287, Manchester Center for Computational.
-
-
-
-
12
-
-
0043044718
-
Numerical solution for fractional differential equations by extrapolation
-
Diethelm K., and Walz G. Numerical solution for fractional differential equations by extrapolation. Numer. Algorithms 16 (1997) 231-253
-
(1997)
Numer. Algorithms
, vol.16
, pp. 231-253
-
-
Diethelm, K.1
Walz, G.2
-
13
-
-
52749084268
-
-
R. Gorenflo, Fractional calculus: some numerical methods, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus, New York, 1997.
-
R. Gorenflo, Fractional calculus: some numerical methods, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus, New York, 1997.
-
-
-
-
14
-
-
0342586404
-
Numerical solution of ordinary fractional differential equations by the fractional difference method
-
Elaydi S., Gyori I., and Ladas G. (Eds), Gordon and Breach, Amsterdam
-
Podlubny I. Numerical solution of ordinary fractional differential equations by the fractional difference method. In: Elaydi S., Gyori I., and Ladas G. (Eds). Advances in Difference Equations (1997), Gordon and Breach, Amsterdam
-
(1997)
Advances in Difference Equations
-
-
Podlubny, I.1
-
15
-
-
29844442304
-
An iterative method for solving nonlinear functional equations
-
and Fractional Calculus, New York, 1997
-
Daftardar-Gejji V., and Jafari H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 316 (2006) 753-763 and Fractional Calculus, New York, 1997
-
(2006)
J. Math. Anal. Appl.
, vol.316
, pp. 753-763
-
-
Daftardar-Gejji, V.1
Jafari, H.2
-
16
-
-
0007140364
-
A new approach to nonlinear partial differential equations
-
He J.H. A new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2 (1997) 230-235
-
(1997)
Commun. Nonlinear Sci. Numer. Simul.
, vol.2
, pp. 230-235
-
-
He, J.H.1
-
17
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
He J.H. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Engrg. 167 (1998) 57-68
-
(1998)
Comput. Methods Appl. Mech. Engrg.
, vol.167
, pp. 57-68
-
-
He, J.H.1
-
19
-
-
0041185368
-
A review of the decomposition method in applied mathematics
-
Adomian G. A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 135 (1988) 501-544
-
(1988)
J. Math. Anal. Appl.
, vol.135
, pp. 501-544
-
-
Adomian, G.1
-
20
-
-
33744981446
-
Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method
-
Momani S., and Odibat Z. Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. Appl. Math. Comput. 177 2 (2006) 488-494
-
(2006)
Appl. Math. Comput.
, vol.177
, Issue.2
, pp. 488-494
-
-
Momani, S.1
Odibat, Z.2
-
21
-
-
30344464250
-
Application of variational iteration method to nonlinear differential equations of fractional order
-
Odibat Z.M., and Momani S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 7 (2006) 27-34
-
(2006)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.7
, pp. 27-34
-
-
Odibat, Z.M.1
Momani, S.2
-
22
-
-
34548650141
-
Numerical solution of Fokker-Planck equation with space- and time-fractional derivatives
-
Odibat Z., and Momani S. Numerical solution of Fokker-Planck equation with space- and time-fractional derivatives. Phys. Lett. A 369 (2007) 349-358
-
(2007)
Phys. Lett. A
, vol.369
, pp. 349-358
-
-
Odibat, Z.1
Momani, S.2
-
23
-
-
33748425302
-
Numerical comparison of methods for solving linear differential equations of fractional order
-
Momani S., and Odibat Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fract. 31 (2007) 1248-1255
-
(2007)
Chaos Solitons Fract.
, vol.31
, pp. 1248-1255
-
-
Momani, S.1
Odibat, Z.2
-
24
-
-
33646878106
-
Analytical approach to linear fractional partial differential equations arising in fluid mechanics
-
Momani S., and Odibat Z. Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett. A 355 (2006) 271-279
-
(2006)
Phys. Lett. A
, vol.355
, pp. 271-279
-
-
Momani, S.1
Odibat, Z.2
-
25
-
-
0006996396
-
General use of the Lagrange multiplier in nonlinear mathematical physics
-
Nemat-Nasser S. (Ed), Pergamon Press, New York
-
Inokuti M., Sekine H., and Mura T. General use of the Lagrange multiplier in nonlinear mathematical physics. In: Nemat-Nasser S. (Ed). Variational Method in the Mechanics of Solids (1978), Pergamon Press, New York 156-162
-
(1978)
Variational Method in the Mechanics of Solids
, pp. 156-162
-
-
Inokuti, M.1
Sekine, H.2
Mura, T.3
-
26
-
-
0031441505
-
Semi-inverse method of establishing generalized principles for fluid mechanics with emphasis on turbomachinery aerodynamics
-
He J.H. Semi-inverse method of establishing generalized principles for fluid mechanics with emphasis on turbomachinery aerodynamics. Int. J. Turbo Jet-Engines 14 (1997) 23-28
-
(1997)
Int. J. Turbo Jet-Engines
, vol.14
, pp. 23-28
-
-
He, J.H.1
|