메뉴 건너뛰기




Volumn 36, Issue 2, 2011, Pages 237-256

Sensitivity analysis of mixed models for incomplete longitudinal data

Author keywords

data analysis; hierarchical modeling; longitudinal studies

Indexed keywords


EID: 79955069622     PISSN: 10769986     EISSN: None     Source Type: Journal    
DOI: 10.3102/1076998610375836     Document Type: Article
Times cited : (31)

References (29)
  • 1
    • 4344643249 scopus 로고    scopus 로고
    • Structured latent curve models for the study of change in multivariate repeated measures
    • Blozis, S.A. (2004). Structured latent curve models for the study of change in multivariate repeated measures. Psychological Methods, 9, 334-353.
    • (2004) Psychological Methods , vol.9 , pp. 334-353
    • Blozis, S.A.1
  • 2
    • 37349122502 scopus 로고    scopus 로고
    • A Newton procedure for a conditionally linear mixed-effects model
    • Blozis, S.A. (2007). A Newton procedure for a conditionally linear mixed-effects model. Behavior Research Methods, 39, 695-708.
    • (2007) Behavior Research Methods , vol.39 , pp. 695-708
    • Blozis, S.A.1
  • 3
    • 0033259166 scopus 로고    scopus 로고
    • Conditionally linear mixed-effects models with latent variable covariates
    • Blozis, S.A., & Cudeck, R. (1999). Conditionally linear mixed-effects models with latent variable covariates. Journal of Educational and Behavioral Statistics, 24, 245-270.
    • (1999) Journal of Educational and Behavioral Statistics , vol.24 , pp. 245-270
    • Blozis, S.A.1    Cudeck, R.2
  • 4
    • 0000484191 scopus 로고
    • Structured latent curve models
    • In C. M. Cuadras & C. R. Rao (Eds.), Amsterdam, Netherlands: Elsevier Science Publishers B. V
    • Browne, M. (1993). Structured latent curve models. In C. M. Cuadras & C. R. Rao (Eds.), Multivariate analysis: Future directions 2. Amsterdam, Netherlands: Elsevier Science Publishers B. V.
    • (1993) Multivariate Analysis: Future Directions 2
    • Browne, M.1
  • 5
    • 0002643508 scopus 로고
    • Models for learning data
    • In L. M. Collins & J. L. Horn (Eds.), Washington, DC: American Psychological Association
    • Browne, M.W., & Du Toit, S.H.C. (1991). Models for learning data. In L. M. Collins & J. L. Horn (Eds.), Best methods for the analysis of change (pp. 47-68). Washington, DC: American Psychological Association.
    • (1991) Best Methods for the Analysis of Change , pp. 47-68
    • Browne, M.W.1    Toit, S.H.C.2
  • 6
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins, L.M., Schafer, J.L., & Kam, C.-H. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330-351.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-H.3
  • 7
    • 0038516907 scopus 로고    scopus 로고
    • A version of quadratic regression with interpretable parameters
    • Cudeck, R., & Du Toit, S.H.C. (2002). A version of quadratic regression with interpretable parameters. Multivariate Behavioral Research, 37, 501-519.
    • (2002) Multivariate Behavioral Research , vol.37 , pp. 501-519
    • Cudeck, R.1    Toit, S.H.C.2
  • 9
    • 4243828610 scopus 로고
    • Informative drop-out in longitudinal data analysis (with discussion)
    • Diggle, P.J., & Kenward, M.G. (1994). Informative drop-out in longitudinal data analysis (with discussion). Applied Statistics, 43, 49-93.
    • (1994) Applied Statistics , vol.43 , pp. 49-93
    • Diggle, P.J.1    Kenward, M.G.2
  • 11
    • 0347249765 scopus 로고    scopus 로고
    • Adding missing-data-relevant variables to FIML-based structural equation models
    • Graham, J.W. (2003). Adding missing-data-relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10, 80-100.
    • (2003) Structural Equation Modeling , vol.10 , pp. 80-100
    • Graham, J.W.1
  • 12
  • 13
    • 0001766028 scopus 로고
    • The common structure of statistical models of truncation, sample selection and limited dependent variables, and a simple estimator for such models
    • Heckman, J.I. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables, and a simple estimator for such models. Annals of Economic and Social Measurement, 5, 475-492.
    • (1976) Annals of Economic and Social Measurement , vol.5 , pp. 475-492
    • Heckman, J.I.1
  • 14
    • 0002105479 scopus 로고    scopus 로고
    • Application of random-effects pattern-mixture models for missing data in longitudinal studies
    • Hedeker, D., & Gibbons, R.D. (1997). Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Methods, 2, 64-78.
    • (1997) Psychological Methods , vol.2 , pp. 64-78
    • Hedeker, D.1    Gibbons, R.D.2
  • 15
    • 0031032359 scopus 로고    scopus 로고
    • Mixture models for the joint distribution of repeated measures and event times
    • Hogan, J.W., & Laird, N.M. (1997). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine, 16, 239-257.
    • (1997) Statistics in Medicine , vol.16 , pp. 239-257
    • Hogan, J.W.1    Laird, N.M.2
  • 17
    • 0023716933 scopus 로고
    • Missing data in longitudinal studies
    • Laird, N.M. (1988). Missing data in longitudinal studies. Statistics in Medicine, 7, 305-315.
    • (1988) Statistics in Medicine , vol.7 , pp. 305-315
    • Laird, N.M.1
  • 19
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal incomplete data
    • Little, R.J.A. (1994). A class of pattern-mixture models for normal incomplete data. Biometrika, 81, 471-483.
    • (1994) Biometrika , vol.81 , pp. 471-483
    • Little, R.J.A.1
  • 20
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated measures studies
    • Little, R.J.A. (1995). Modeling the drop-out mechanism in repeated measures studies. Journal of the American Statistical Association, 90, 1112-1121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 1112-1121
    • Little, R.J.A.1
  • 22
    • 34249962132 scopus 로고
    • Latent curve analysis
    • Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107-122.
    • (1990) Psychometrika , vol.55 , pp. 107-122
    • Meredith, W.1    Tisak, J.2
  • 23
    • 38949124382 scopus 로고    scopus 로고
    • Every missing not at random model has got a missing at random counterpart with equal fit
    • Series B
    • Molenberghs, G., Beunckens, C., Sotto, C., & Kenward, M.G. (2008). Every missing not at random model has got a missing at random counterpart with equal fit. Journal of the Royal Statistical Society Series B, 70, 371-388.
    • (2008) Journal of the Royal Statistical Society , vol.70 , pp. 371-388
    • Molenberghs, G.1    Beunckens, C.2    Sotto, C.3    Kenward, M.G.4
  • 26
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer, J.L., & Graham, J.W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147-177.
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 28
    • 12044258058 scopus 로고
    • Using covariance structure analysis to detect correlates and predictors of individual change over time
    • Willett, J., & Sayer, A. (1994). Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychological Bulletin, 116, 363-380.
    • (1994) Psychological Bulletin , vol.116 , pp. 363-380
    • Willett, J.1    Sayer, A.2
  • 29
    • 0023921412 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
    • Wu, M.C., & Carroll, R.J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics, 44, 175-188.
    • (1988) Biometrics , vol.44 , pp. 175-188
    • Wu, M.C.1    Carroll, R.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.