-
1
-
-
7444220645
-
-
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov Science 306 2004 666
-
(2004)
Science
, vol.306
, pp. 666
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
5
-
-
33744469329
-
-
C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de Heer Science 312 2006 1191
-
(2006)
Science
, vol.312
, pp. 1191
-
-
Berger, C.1
Song, Z.2
Li, X.3
Wu, X.4
Brown, N.5
Naud, C.6
Mayou, D.7
Li, T.8
Hass, J.9
Marchenkov, A.N.10
Conrad, E.H.11
First, P.N.12
De Heer, W.A.13
-
10
-
-
33947176113
-
-
K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, and A.K. Geim Science 315 2007 1379
-
(2007)
Science
, vol.315
, pp. 1379
-
-
Novoselov, K.S.1
Jiang, Z.2
Zhang, Y.3
Morozov, S.V.4
Stormer, H.L.5
Zeitler, U.6
Maan, J.C.7
Boebinger, G.S.8
Kim, P.9
Geim, A.K.10
-
15
-
-
34548388792
-
-
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov Nat. Mater. 6 2007 652
-
(2007)
Nat. Mater.
, vol.6
, pp. 652
-
-
Schedin, F.1
Geim, A.K.2
Morozov, S.V.3
Hill, E.W.4
Blake, P.5
Katsnelson, M.I.6
Novoselov, K.S.7
-
18
-
-
0037445017
-
-
Y. Miura, H. Kasai, W. Diño, H. Nakanishi, and T. Sugimoto J. Appl. Phys. 93 2003 3395
-
(2003)
J. Appl. Phys.
, vol.93
, pp. 3395
-
-
Miura, Y.1
Kasai, H.2
Diño, W.3
Nakanishi, H.4
Sugimoto, T.5
-
26
-
-
75249102538
-
-
Y.H. Zhang, K.G. Zhou, K.F. Xie, J. Zeng, H.L. Zhang, and Y. Peng Nanotechnology 21 2010 065201
-
(2010)
Nanotechnology
, vol.21
, pp. 065201
-
-
Zhang, Y.H.1
Zhou, K.G.2
Xie, K.F.3
Zeng, J.4
Zhang, H.L.5
Peng, Y.6
-
27
-
-
77953745154
-
-
A.L. Aguiar, S.B. Fagan, L.B. da Silva, J.M. Filho, and A.G.S. Filho J. Phys. Chem. C 114 2010 10790
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 10790
-
-
Aguiar, A.L.1
Fagan, S.B.2
Da Silva, L.B.3
Filho, J.M.4
Filho, A.G.S.5
-
33
-
-
57049185903
-
-
E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, and I. Honma Nano Lett. 8 2008 2277
-
(2008)
Nano Lett.
, vol.8
, pp. 2277
-
-
Yoo, E.1
Kim, J.2
Hosono, E.3
Zhou, H.4
Kudo, T.5
Honma, I.6
-
37
-
-
0003912310
-
-
Gaussian Inc. Pittsburgh, PA
-
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, and K.N. Kudin Gaussian Development Version (Rev. f.1) 2008 Gaussian Inc. Pittsburgh, PA
-
(2008)
Gaussian Development Version (Rev. f.1)
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Montgomery, Jr.J.A.7
Vreven, T.8
Kudin, K.N.9
-
38
-
-
0003460779
-
-
The Self-Consistent Field for Molecular and Solids McGraw-Hill NewYork
-
J. Slater Quantum Theory of Molecular and Solids The Self-Consistent Field for Molecular and Solids Vol. 4 1974 McGraw-Hill NewYork
-
(1974)
Quantum Theory of Molecular and Solids
, vol.4 VOL.
-
-
Slater, J.1
-
42
-
-
79960717515
-
-
This basis set consists of (3s2p1d) contracted Gaussian functions for C and Li and (2 s 1p) for H
-
This basis set consists of (3s2p1d) contracted Gaussian functions for C and Li and (2 s 1p) for H.
-
-
-
-
52
-
-
48949087936
-
-
M. Khantha, N.A. Cordero, L.M. Molina, J.A. Alonso, and L.A. Girifalco Phys. Rev. B 70 2004 125422
-
(2004)
Phys. Rev. B
, vol.70
, pp. 125422
-
-
Khantha, M.1
Cordero, N.A.2
Molina, L.M.3
Alonso, J.A.4
Girifalco, L.A.5
-
54
-
-
79960717960
-
-
The reciprocal space integration has been performed in a 180, 120 and 50 uniform k-point grid for the (2 × 4), (3 × 4) and the (4 × 8) graphene cells respectively and 90, 60 30 grids after duplication
-
The reciprocal space integration has been performed in a 180, 120 and 50 uniform k-point grid for the (2 × 4), (3 × 4) and the (4 × 8) graphene cells respectively and 90, 60 30 grids after duplication.
-
-
-
-
55
-
-
79960736593
-
-
An 80 k-point uniform grid for the one-dimensional nanoribbons of 0.355 nm length and a 40 k-point grid for the 0.781 nm length were chosen (after unit cell duplication 40 and 20 k-point grids were used)
-
An 80 k-point uniform grid for the one-dimensional nanoribbons of 0.355 nm length and a 40 k-point grid for the 0.781 nm length were chosen (after unit cell duplication 40 and 20 k-point grids were used).
-
-
-
|