-
1
-
-
51949087754
-
Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response
-
Guisbert E., Yura T., Rhodius V.A., Gross C.A. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev 2008, 72:545-554.
-
(2008)
Microbiol Mol Biol Rev
, vol.72
, pp. 545-554
-
-
Guisbert, E.1
Yura, T.2
Rhodius, V.A.3
Gross, C.A.4
-
2
-
-
33745618956
-
Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress
-
Nonaka G., Blankschien M., Herman C., Gross C.A., Rhodius V.A. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. Genes Dev 2006, 20:1776-1789.
-
(2006)
Genes Dev
, vol.20
, pp. 1776-1789
-
-
Nonaka, G.1
Blankschien, M.2
Herman, C.3
Gross, C.A.4
Rhodius, V.A.5
-
3
-
-
33748350078
-
Extensive functional overlap between sigma factors in Escherichia coli
-
Wade J.T., Roa D.C., Grainger D.C., Hurd D., Busby S.J., Struhl K., Nudler E. Extensive functional overlap between sigma factors in Escherichia coli. Nat Struct Mol Biol 2006, 13:806-814.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 806-814
-
-
Wade, J.T.1
Roa, D.C.2
Grainger, D.C.3
Hurd, D.4
Busby, S.J.5
Struhl, K.6
Nudler, E.7
-
4
-
-
24044489239
-
The global transcriptional response of Escherichia coli to induced sigma 32 protein involves sigma 32 regulon activation followed by inactivation and degradation of sigma 32 in vivo
-
Zhao K., Liu M., Burgess R.R. The global transcriptional response of Escherichia coli to induced sigma 32 protein involves sigma 32 regulon activation followed by inactivation and degradation of sigma 32 in vivo. J Biol Chem 2005, 280:17758-17768.
-
(2005)
J Biol Chem
, vol.280
, pp. 17758-17768
-
-
Zhao, K.1
Liu, M.2
Burgess, R.R.3
-
5
-
-
4444377383
-
Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation
-
Flynn J.M., Levchenko I., Sauer R.T., Baker T.A. Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev 2004, 18:2292-2301.
-
(2004)
Genes Dev
, vol.18
, pp. 2292-2301
-
-
Flynn, J.M.1
Levchenko, I.2
Sauer, R.T.3
Baker, T.A.4
-
6
-
-
0037351068
-
Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals
-
Flynn J.M., Neher S.B., Kim Y.I., Sauer R.T., Baker T.A. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 2003, 11:671-683.
-
(2003)
Mol Cell
, vol.11
, pp. 671-683
-
-
Flynn, J.M.1
Neher, S.B.2
Kim, Y.I.3
Sauer, R.T.4
Baker, T.A.5
-
7
-
-
0034596991
-
Subunit-specific degradation of the UmuD/D' heterodimer by the ClpXP protease: the role of trans recognition in UmuD' stability
-
Gonzalez M., Rasulova F., Maurizi M.R., Woodgate R. Subunit-specific degradation of the UmuD/D' heterodimer by the ClpXP protease: the role of trans recognition in UmuD' stability. EMBO J 2000, 19:5251-5258.
-
(2000)
EMBO J
, vol.19
, pp. 5251-5258
-
-
Gonzalez, M.1
Rasulova, F.2
Maurizi, M.R.3
Woodgate, R.4
-
8
-
-
0030908043
-
ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway
-
Levchenko I., Yamauchi M., Baker T.A. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Genes Dev 1997, 11:1561-1572.
-
(1997)
Genes Dev
, vol.11
, pp. 1561-1572
-
-
Levchenko, I.1
Yamauchi, M.2
Baker, T.A.3
-
9
-
-
0037740010
-
Latent ClpX-recognition signals ensure LexA destruction after DNA damage
-
Neher S.B., Flynn J.M., Sauer R.T., Baker T.A. Latent ClpX-recognition signals ensure LexA destruction after DNA damage. Genes Dev 2003, 17:1084-1089.
-
(2003)
Genes Dev
, vol.17
, pp. 1084-1089
-
-
Neher, S.B.1
Flynn, J.M.2
Sauer, R.T.3
Baker, T.A.4
-
10
-
-
17844377879
-
Nucleotide-dependent substrate recognition by the AAA+ HslUV protease
-
Burton R.E., Baker T.A., Sauer R.T. Nucleotide-dependent substrate recognition by the AAA+ HslUV protease. Nat Struct Mol Biol 2005, 12:245-251.
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 245-251
-
-
Burton, R.E.1
Baker, T.A.2
Sauer, R.T.3
-
11
-
-
33645085050
-
The C-terminal end of LpxC is required for degradation by the FtsH protease
-
Fuhrer F., Langklotz S., Narberhaus F. The C-terminal end of LpxC is required for degradation by the FtsH protease. Mol Microbiol 2006, 59:1025-1036.
-
(2006)
Mol Microbiol
, vol.59
, pp. 1025-1036
-
-
Fuhrer, F.1
Langklotz, S.2
Narberhaus, F.3
-
12
-
-
0034634591
-
Substrate recognition by the ClpA chaperone component of ClpAP protease
-
Hoskins J.R., Kim S.Y., Wickner S. Substrate recognition by the ClpA chaperone component of ClpAP protease. J Biol Chem 2000, 275:35361-35367.
-
(2000)
J Biol Chem
, vol.275
, pp. 35361-35367
-
-
Hoskins, J.R.1
Kim, S.Y.2
Wickner, S.3
-
13
-
-
0034029946
-
Regulatory role of C-terminal residues of SulA in its degradation by Lon protease in Escherichia coli
-
Ishii Y., Sonezaki S., Iwasaki Y., Miyata Y., Akita K., Kato Y., Amano F. Regulatory role of C-terminal residues of SulA in its degradation by Lon protease in Escherichia coli. J Biochem 2000, 127:837-844.
-
(2000)
J Biochem
, vol.127
, pp. 837-844
-
-
Ishii, Y.1
Sonezaki, S.2
Iwasaki, Y.3
Miyata, Y.4
Akita, K.5
Kato, Y.6
Amano, F.7
-
14
-
-
33644935094
-
Sequence requirements for Lon-dependent degradation of the Escherichia coli transcription activator SoxS: identification of the SoxS residues critical to proteolysis and specific inhibition of in vitro degradation by a peptide comprised of the N-terminal 21 amino acid residues
-
Shah I.M., Wolf R.E. Sequence requirements for Lon-dependent degradation of the Escherichia coli transcription activator SoxS: identification of the SoxS residues critical to proteolysis and specific inhibition of in vitro degradation by a peptide comprised of the N-terminal 21 amino acid residues. J Mol Biol 2006, 357:718-731.
-
(2006)
J Mol Biol
, vol.357
, pp. 718-731
-
-
Shah, I.M.1
Wolf, R.E.2
-
15
-
-
0033517351
-
Global unfolding of a substrate protein by the Hsp100 chaperone ClpA
-
Weber-Ban E.U., Reid B.G., Miranker A.D., Horwich A.L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 1999, 401:90-93.
-
(1999)
Nature
, vol.401
, pp. 90-93
-
-
Weber-Ban, E.U.1
Reid, B.G.2
Miranker, A.D.3
Horwich, A.L.4
-
16
-
-
50049083221
-
Recognition of misfolded proteins by Lon, a AAA(+) protease
-
Gur E., Sauer R.T. Recognition of misfolded proteins by Lon, a AAA(+) protease. Genes Dev 2008, 22:2267-2277.
-
(2008)
Genes Dev
, vol.22
, pp. 2267-2277
-
-
Gur, E.1
Sauer, R.T.2
-
17
-
-
0017863123
-
Deg phenotype of Escherichia coli lon mutants
-
Gottesman S., Zipser D. Deg phenotype of Escherichia coli lon mutants. J Bacteriol 1978, 133:844-851.
-
(1978)
J Bacteriol
, vol.133
, pp. 844-851
-
-
Gottesman, S.1
Zipser, D.2
-
18
-
-
0033618309
-
Marked instability of the sigma(32) heat shock transcription factor at high temperature. Implications for heat shock regulation
-
Kanemori M., Yanagi H., Yura T. Marked instability of the sigma(32) heat shock transcription factor at high temperature. Implications for heat shock regulation. J Biol Chem 1999, 274:22002-22007.
-
(1999)
J Biol Chem
, vol.274
, pp. 22002-22007
-
-
Kanemori, M.1
Yanagi, H.2
Yura, T.3
-
19
-
-
0023240043
-
The heat shock response of E. coli is regulated by changes in the concentration of sigma 32
-
Straus D.B., Walter W.A., Gross C.A. The heat shock response of E. coli is regulated by changes in the concentration of sigma 32. Nature 1987, 329:348-351.
-
(1987)
Nature
, vol.329
, pp. 348-351
-
-
Straus, D.B.1
Walter, W.A.2
Gross, C.A.3
-
20
-
-
0034705039
-
Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli
-
Morita M.T., Kanemori M., Yanagi H., Yura T. Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli. Proc Natl Acad Sci USA 2000, 97:5860-5865.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 5860-5865
-
-
Morita, M.T.1
Kanemori, M.2
Yanagi, H.3
Yura, T.4
-
21
-
-
0028985616
-
Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB
-
Herman C., Thevenet D., D'Ari R., Bouloc P. Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc Natl Acad Sci USA 1995, 92:3516-3520.
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 3516-3520
-
-
Herman, C.1
Thevenet, D.2
D'Ari, R.3
Bouloc, P.4
-
22
-
-
0030613795
-
Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli
-
Kanemori M., Nishihara K., Yanagi H., Yura T. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J Bacteriol 1997, 179:7219-7225.
-
(1997)
J Bacteriol
, vol.179
, pp. 7219-7225
-
-
Kanemori, M.1
Nishihara, K.2
Yanagi, H.3
Yura, T.4
-
23
-
-
0029060112
-
Escherichia coli FtsH is a membrane-bound. ATP-dependent protease which degrades the heat-shock transcription factor sigma 32
-
Tomoyasu T., Gamer J., Bukau B., Kanemori M., Mori H., Rutman A.J., Oppenheim A.B., Yura T., Yamanaka K., Niki H., et al. Escherichia coli FtsH is a membrane-bound. ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO J 1995, 14:2551-2560.
-
(1995)
EMBO J
, vol.14
, pp. 2551-2560
-
-
Tomoyasu, T.1
Gamer, J.2
Bukau, B.3
Kanemori, M.4
Mori, H.5
Rutman, A.J.6
Oppenheim, A.B.7
Yura, T.8
Yamanaka, K.9
Niki, H.10
-
24
-
-
7744233862
-
Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity
-
Horikoshi M., Yura T., Tsuchimoto S., Fukumori Y., Kanemori M. Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity. J Bacteriol 2004, 186:7474-7480.
-
(2004)
J Bacteriol
, vol.186
, pp. 7474-7480
-
-
Horikoshi, M.1
Yura, T.2
Tsuchimoto, S.3
Fukumori, Y.4
Kanemori, M.5
-
25
-
-
18944378454
-
Identification of a turnover element in region 2.1 of Escherichia coli sigma32 by a bacterial one-hybrid approach
-
Obrist M., Narberhaus F. Identification of a turnover element in region 2.1 of Escherichia coli sigma32 by a bacterial one-hybrid approach. J Bacteriol 2005, 187:3807-3813.
-
(2005)
J Bacteriol
, vol.187
, pp. 3807-3813
-
-
Obrist, M.1
Narberhaus, F.2
-
26
-
-
36749102048
-
Analysis of sigma32 mutants defective in chaperone-mediated feedback control reveals unexpected complexity of the heat shock response
-
Yura T., Guisbert E., Poritz M., Lu C.Z., Campbell E., Gross C.A. Analysis of sigma32 mutants defective in chaperone-mediated feedback control reveals unexpected complexity of the heat shock response. Proc Natl Acad Sci USA 2007, 104:17638-17643.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 17638-17643
-
-
Yura, T.1
Guisbert, E.2
Poritz, M.3
Lu, C.Z.4
Campbell, E.5
Gross, C.A.6
-
27
-
-
34547918032
-
Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is necessary but not sufficient for degradation by the FtsH protease
-
Obrist M., Milek S., Klauck E., Hengge R., Narberhaus F. Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is necessary but not sufficient for degradation by the FtsH protease. Microbiology 2007, 153:2560-2571.
-
(2007)
Microbiology
, vol.153
, pp. 2560-2571
-
-
Obrist, M.1
Milek, S.2
Klauck, E.3
Hengge, R.4
Narberhaus, F.5
-
28
-
-
0028173076
-
A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli
-
Nagai H., Yuzawa H., Kanemori M., Yura T. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli. Proc Natl Acad Sci USA 1994, 91:10280-10284.
-
(1994)
Proc Natl Acad Sci USA
, vol.91
, pp. 10280-10284
-
-
Nagai, H.1
Yuzawa, H.2
Kanemori, M.3
Yura, T.4
-
29
-
-
0042204157
-
Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32
-
Arsene F., Tomoyasu T., Mogk A., Schirra C., Schulze-Specking A., Bukau B. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32. J Bacteriol 1999, 181:3552-3561.
-
(1999)
J Bacteriol
, vol.181
, pp. 3552-3561
-
-
Arsene, F.1
Tomoyasu, T.2
Mogk, A.3
Schirra, C.4
Schulze-Specking, A.5
Bukau, B.6
-
30
-
-
0033856371
-
Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease
-
Urech C., Koby S., Oppenheim A.B., Munchbach M., Hennecke H., Narberhaus F. Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease. Eur J Biochem 2000, 267:4831-4839.
-
(2000)
Eur J Biochem
, vol.267
, pp. 4831-4839
-
-
Urech, C.1
Koby, S.2
Oppenheim, A.B.3
Munchbach, M.4
Hennecke, H.5
Narberhaus, F.6
-
31
-
-
57449104565
-
Region C of the Escherichia coli heat shock sigma factor RpoH (sigma 32) contains a turnover element for proteolysis by the FtsH protease
-
Obrist M., Langklotz S., Milek S., Fuhrer F., Narberhaus F. Region C of the Escherichia coli heat shock sigma factor RpoH (sigma 32) contains a turnover element for proteolysis by the FtsH protease. FEMS Microbiol Lett 2009, 290:199-208.
-
(2009)
FEMS Microbiol Lett
, vol.290
, pp. 199-208
-
-
Obrist, M.1
Langklotz, S.2
Milek, S.3
Fuhrer, F.4
Narberhaus, F.5
-
32
-
-
33751228400
-
ATP-dependent proteases of bacteria: recognition logic and operating principles
-
Baker T.A., Sauer R.T. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem Sci 2006, 31:647-653.
-
(2006)
Trends Biochem Sci
, vol.31
, pp. 647-653
-
-
Baker, T.A.1
Sauer, R.T.2
-
33
-
-
77949346874
-
The IbpA and IbpB small heat-shock proteins are substrates of the AAA+ Lon protease
-
Bissonnette S.A., Rivera-Rivera I., Sauer R.T., Baker T.A. The IbpA and IbpB small heat-shock proteins are substrates of the AAA+ Lon protease. Mol Microbiol 2010, 75:1539-1549.
-
(2010)
Mol Microbiol
, vol.75
, pp. 1539-1549
-
-
Bissonnette, S.A.1
Rivera-Rivera, I.2
Sauer, R.T.3
Baker, T.A.4
-
34
-
-
0041465001
-
Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX
-
Studemann A., Noirclerc-Savoye M., Klauck E., Becker G., Schneider D., Hengge R. Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX. EMBO J 2003, 22:4111-4120.
-
(2003)
EMBO J
, vol.22
, pp. 4111-4120
-
-
Studemann, A.1
Noirclerc-Savoye, M.2
Klauck, E.3
Becker, G.4
Schneider, D.5
Hengge, R.6
-
35
-
-
0035281566
-
The RssB response regulator directly targets sigma(S) for degradation by ClpXP
-
Zhou Y., Gottesman S., Hoskins J.R., Maurizi M.R., Wickner S. The RssB response regulator directly targets sigma(S) for degradation by ClpXP. Genes Dev 2001, 15:627-637.
-
(2001)
Genes Dev
, vol.15
, pp. 627-637
-
-
Zhou, Y.1
Gottesman, S.2
Hoskins, J.R.3
Maurizi, M.R.4
Wickner, S.5
-
36
-
-
8644290874
-
A chaperone network controls the heat shock response in E. coli
-
Guisbert E., Herman C., Lu C.Z., Gross C.A. A chaperone network controls the heat shock response in E. coli. Genes Dev 2004, 18:2812-2821.
-
(2004)
Genes Dev
, vol.18
, pp. 2812-2821
-
-
Guisbert, E.1
Herman, C.2
Lu, C.Z.3
Gross, C.A.4
-
37
-
-
0025632973
-
DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32
-
Straus D., Walter W., Gross C.A. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev 1990, 4:2202-2209.
-
(1990)
Genes Dev
, vol.4
, pp. 2202-2209
-
-
Straus, D.1
Walter, W.2
Gross, C.A.3
-
38
-
-
0032920680
-
On the mechanism of FtsH-dependent degradation of the sigma 32 transcriptional regulator of Escherichia coli and the role of the Dnak chaperone machine
-
Blaszczak A., Georgopoulos C., Liberek K. On the mechanism of FtsH-dependent degradation of the sigma 32 transcriptional regulator of Escherichia coli and the role of the Dnak chaperone machine. Mol Microbiol 1999, 31:157-166.
-
(1999)
Mol Microbiol
, vol.31
, pp. 157-166
-
-
Blaszczak, A.1
Georgopoulos, C.2
Liberek, K.3
-
39
-
-
55249108963
-
Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones
-
Rodriguez F., Arsene-Ploetze F., Rist W., Rudiger S., Schneider-Mergener J., Mayer M.P., Bukau B. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Mol Cell 2008, 32:347-358.
-
(2008)
Mol Cell
, vol.32
, pp. 347-358
-
-
Rodriguez, F.1
Arsene-Ploetze, F.2
Rist, W.3
Rudiger, S.4
Schneider-Mergener, J.5
Mayer, M.P.6
Bukau, B.7
-
40
-
-
0344211512
-
Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH
-
Herman C., Prakash S., Lu C.Z., Matouschek A., Gross C.A. Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol Cell 2003, 11:659-669.
-
(2003)
Mol Cell
, vol.11
, pp. 659-669
-
-
Herman, C.1
Prakash, S.2
Lu, C.Z.3
Matouschek, A.4
Gross, C.A.5
-
41
-
-
1642333987
-
Spectrometric analysis of degradation of a physiological substrate sigma32 by Escherichia coli AAA protease FtsH
-
Okuno T., Yamada-Inagawa T., Karata K., Yamanaka K., Ogura T. Spectrometric analysis of degradation of a physiological substrate sigma32 by Escherichia coli AAA protease FtsH. J Struct Biol 2004, 146:148-154.
-
(2004)
J Struct Biol
, vol.146
, pp. 148-154
-
-
Okuno, T.1
Yamada-Inagawa, T.2
Karata, K.3
Yamanaka, K.4
Ogura, T.5
-
42
-
-
6044276737
-
The Escherichia coli DjlA and CbpA proteins can substitute for DnaJ in DnaK-mediated protein disaggregation
-
Gur E., Biran D., Shechter N., Genevaux P., Georgopoulos C., Ron E.Z. The Escherichia coli DjlA and CbpA proteins can substitute for DnaJ in DnaK-mediated protein disaggregation. J Bacteriol 2004, 186:7236-7242.
-
(2004)
J Bacteriol
, vol.186
, pp. 7236-7242
-
-
Gur, E.1
Biran, D.2
Shechter, N.3
Genevaux, P.4
Georgopoulos, C.5
Ron, E.Z.6
-
43
-
-
4043103993
-
CbpA, a DnaJ homolog, is a DnaK co-chaperone, and its activity is modulated by CbpM
-
Chae C., Sharma S., Hoskins J.R., Wickner S. CbpA, a DnaJ homolog, is a DnaK co-chaperone, and its activity is modulated by CbpM. J Biol Chem 2004, 279:33147-33153.
-
(2004)
J Biol Chem
, vol.279
, pp. 33147-33153
-
-
Chae, C.1
Sharma, S.2
Hoskins, J.R.3
Wickner, S.4
-
44
-
-
34247632202
-
In vivo modulation of a DnaJ homolog, CbpA, by CbpM
-
Chenoweth M.R., Trun N., Wickner S. In vivo modulation of a DnaJ homolog, CbpA, by CbpM. J Bacteriol 2007, 189:3635-3638.
-
(2007)
J Bacteriol
, vol.189
, pp. 3635-3638
-
-
Chenoweth, M.R.1
Trun, N.2
Wickner, S.3
-
45
-
-
48149104997
-
Complex regulation of the DnaJ homolog CbpA by the global regulators sigmaS and Lrp, by the specific inhibitor CbpM, and by the proteolytic degradation of CbpM
-
Chenoweth M.R., Wickner S. Complex regulation of the DnaJ homolog CbpA by the global regulators sigmaS and Lrp, by the specific inhibitor CbpM, and by the proteolytic degradation of CbpM. J Bacteriol 2008, 190:5153-5161.
-
(2008)
J Bacteriol
, vol.190
, pp. 5153-5161
-
-
Chenoweth, M.R.1
Wickner, S.2
-
46
-
-
0033214149
-
Genome-wide expression profiling in Escherichia coli K-12
-
Richmond C.S., Glasner J.D., Mau R., Jin H., Blattner F.R. Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res 1999, 27:3821-3835.
-
(1999)
Nucleic Acids Res
, vol.27
, pp. 3821-3835
-
-
Richmond, C.S.1
Glasner, J.D.2
Mau, R.3
Jin, H.4
Blattner, F.R.5
-
47
-
-
16844368450
-
The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state
-
Matuszewska M., Kuczynska-Wisnik D., Laskowska E., Liberek K. The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. J Biol Chem 2005, 280:12292-12298.
-
(2005)
J Biol Chem
, vol.280
, pp. 12292-12298
-
-
Matuszewska, M.1
Kuczynska-Wisnik, D.2
Laskowska, E.3
Liberek, K.4
-
48
-
-
0142125283
-
Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation
-
Mogk A., Deuerling E., Vorderwulbecke S., Vierling E., Bukau B. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 2003, 50:585-595.
-
(2003)
Mol Microbiol
, vol.50
, pp. 585-595
-
-
Mogk, A.1
Deuerling, E.2
Vorderwulbecke, S.3
Vierling, E.4
Bukau, B.5
-
49
-
-
0032079487
-
The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network
-
Veinger L., Diamant S., Buchner J., Goloubinoff P. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 1998, 273:11032-11037.
-
(1998)
J Biol Chem
, vol.273
, pp. 11032-11037
-
-
Veinger, L.1
Diamant, S.2
Buchner, J.3
Goloubinoff, P.4
-
50
-
-
78650749888
-
Multiple layers of control govern expression of the Escherichia coli ibpAB heat shock operon
-
Gaubig L.C., Waldminghaus T., Narberhaus F. Multiple layers of control govern expression of the Escherichia coli ibpAB heat shock operon. Microbiology 2010, 157:66-76.
-
(2010)
Microbiology
, vol.157
, pp. 66-76
-
-
Gaubig, L.C.1
Waldminghaus, T.2
Narberhaus, F.3
-
51
-
-
27144448839
-
Some like it hot: the structure and function of small heat-shock proteins
-
Haslbeck M., Franzmann T., Weinfurtner D., Buchner J. Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 2005, 12:842-846.
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 842-846
-
-
Haslbeck, M.1
Franzmann, T.2
Weinfurtner, D.3
Buchner, J.4
-
52
-
-
23244464653
-
The small heat-shock proteins IbpA and IbpB reduce the stress load of recombinant Escherichia coli and delay degradation of inclusion bodies
-
Lethanh H., Neubauer P., Hoffmann F. The small heat-shock proteins IbpA and IbpB reduce the stress load of recombinant Escherichia coli and delay degradation of inclusion bodies. Microb Cell Fact 2005, 4:6.
-
(2005)
Microb Cell Fact
, vol.4
, pp. 6
-
-
Lethanh, H.1
Neubauer, P.2
Hoffmann, F.3
|