메뉴 건너뛰기




Volumn 3, Issue 3, 2009, Pages 1052-1079

Hierarchical spatial models for predicting tree species assemblages across large domains

Author keywords

Bayesian inference; Logistic regression; Markov chain Monte Carlo; Spatial predictive process; Spatially varying coefficients; Species assemblages

Indexed keywords


EID: 79954501879     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/09-AOAS250     Document Type: Article
Times cited : (43)

References (58)
  • 2
    • 0004247209 scopus 로고
    • Regional landscape ecosystems of Michigan, Minnesota, and Wisconsin: A working map and classification
    • USDA Forest Service, North Central Forest Experiment Station, St. Paul, MN
    • Albert, D. A. (1995). Regional landscape ecosystems of Michigan, Minnesota, and Wisconsin: A working map and classification. Report No. Gen. Tech. Rep. NC-178. USDA Forest Service, North Central Forest Experiment Station, St. Paul, MN.
    • (1995) Report No. Gen. Tech. Rep. NC-178
    • Albert, D.A.1
  • 4
    • 24944459669 scopus 로고    scopus 로고
    • The enhanced forest inventory and analysis program-national sampling design and estimation procedures
    • In, USDA Forest Service, Southern Research Station 85, Asheville, NC
    • Bechtold, W. A. and Patterson, P. L. (2005). The enhanced forest inventory and analysis program-national sampling design and estimation procedures. In General Technical Report SRS-80. USDA Forest Service, Southern Research Station 85, Asheville, NC.
    • (2005) General Technical Report SRS-80.
    • Bechtold, W.A.1    Patterson, P.L.2
  • 5
    • 62949087988 scopus 로고
    • Calculation of polytomous logistic regression parameters using individualized regressions
    • Begg, C. B. and Gray, R. (1984). Calculation of polytomous logistic regression parameters using individualized regressions. Biometrika 71 11-18.
    • (1984) Biometrika , vol.71 , pp. 11-18
    • Begg, C.B.1    Gray, R.2
  • 6
    • 42349084895 scopus 로고    scopus 로고
    • Bivariate binomial spatial modeling of Loa loa prevalence in tropical Africa (with discussion)
    • Crainiceanu, C. M., Diggle, P. J. and Rowlingson, B. (2008). Bivariate binomial spatial modeling of Loa loa prevalence in tropical Africa (with discussion).J. Amer. Statist. Assoc. 103 21-37.
    • (2008) J. Amer. Statist. Assoc. , vol.103 , pp. 21-37
    • Crainiceanu, C.M.1    Diggle, P.J.2    Rowlingson, B.3
  • 8
    • 37849041594 scopus 로고    scopus 로고
    • Fixed rank kriging for very large spatial data sets
    • Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large spatial data sets. J. Roy. Statist. Soc. Ser. B 70 209-226.
    • (2008) J. Roy. Statist. Soc. Ser. B , vol.70 , pp. 209-226
    • Cressie, N.1    Johannesson, G.2
  • 10
    • 0442325081 scopus 로고    scopus 로고
    • Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models
    • Daniels, M. J. and Kass, R. E. (1999). Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. J. Amer. Statist. Assoc. 94 1254-1263.
    • (1999) J. Amer. Statist. Assoc. , vol.94 , pp. 1254-1263
    • Daniels, M.J.1    Kass, R.E.2
  • 11
    • 33645062953 scopus 로고    scopus 로고
    • Bayesian geostatistical design
    • Diggle, P. J. and Lophaven, S. (2006). Bayesian geostatistical design. Scand. J. Statist. 33 53-64.
    • (2006) Scand. J. Statist. , vol.33 , pp. 53-64
    • Diggle, P.J.1    Lophaven, S.2
  • 12
    • 0040843494 scopus 로고    scopus 로고
    • Model-based geostatistics (with discussion)
    • Diggle, P. J., Tawn, J. A. and Moyeed, R. A. (1998). Model-based geostatistics (with discussion). Appl. Statist. 47 299-350.
    • (1998) Appl. Statist. , vol.47 , pp. 299-350
    • Diggle, P.J.1    Tawn, J.A.2    Moyeed, R.A.3
  • 13
    • 0035649015 scopus 로고    scopus 로고
    • Bayesian inference for generalized additive mixed models based on Markov random field priors
    • Fahrmeir, L. and Lang, S. (2001). Bayesian inference for generalized additive mixed models based on Markov random field priors. J. Roy. Statist. Soc. Ser. C 50 201-220.
    • (2001) J. Roy. Statist. Soc. Ser. C , vol.50 , pp. 201-220
    • Fahrmeir, L.1    Lang, S.2
  • 15
    • 42249097583 scopus 로고    scopus 로고
    • A Bayesian approach to quantifying uncertainty in multi-source forest area estimates
    • Finley, A. O., Banerjee, S. and McRoberts, R. E. (2008b). A Bayesian approach to quantifying uncertainty in multi-source forest area estimates. Environ. Ecol. Statist. 15 241-258.
    • (2008) Environ. Ecol. Statist. , vol.15 , pp. 241-258
    • Finley, A.O.1    Banerjee, S.2    McRoberts, R.E.3
  • 17
    • 0042401905 scopus 로고    scopus 로고
    • A new class of nonstationary spatial models
    • Fuentes, M. (2002). A new class of nonstationary spatial models. Biometrika 89 197-210.
    • (2002) Biometrika , vol.89 , pp. 197-210
    • Fuentes, M.1
  • 18
    • 33947194951 scopus 로고    scopus 로고
    • Approximate likelihood for large irregularly spaced spatial data
    • Fuentes, M. (2007). Approximate likelihood for large irregularly spaced spatial data. J. Amer. Statist. Assoc. 102 321-331.
    • (2007) J. Amer. Statist. Assoc. , vol.102 , pp. 321-331
    • Fuentes, M.1
  • 19
    • 33750007327 scopus 로고    scopus 로고
    • Covariance tapering for interpolation of large spatial datasets
    • Furrer, R., Genton, M. G. and Nychka, D. (2006). Covariance tapering for interpolation of large spatial datasets. J. Comput. Graph. Statist. 15 502-523.
    • (2006) J. Comput. Graph. Statist. , vol.15 , pp. 502-523
    • Furrer, R.1    Genton, M.G.2    Nychka, D.3
  • 21
    • 13444251351 scopus 로고    scopus 로고
    • Nonstationary multivariate process modeling through spatially varying coregionalization (with discussion)
    • Gelfand, A. E., Schmidt, A. M., Banerjee, S. and Sirmans, C. F. (2004). Nonstationary multivariate process modeling through spatially varying coregionalization (with discussion). Test 13 263-312.
    • (2004) Test , vol.13 , pp. 263-312
    • Gelfand, A.E.1    Schmidt, A.M.2    Banerjee, S.3    Sirmans, C.F.4
  • 24
    • 0036858503 scopus 로고    scopus 로고
    • Compactly supported correlation functions
    • Gneiting, T. (2002). Compactly supported correlation functions. J. Multivariate Anal. 83 493-508.
    • (2002) J. Multivariate Anal. , vol.83 , pp. 493-508
    • Gneiting, T.1
  • 25
    • 33947274775 scopus 로고    scopus 로고
    • Strictly proper scoring rules, prediction, and estimation
    • Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist. Assoc. 102 359-378.
    • (2007) J. Amer. Statist. Assoc. , vol.102 , pp. 359-378
    • Gneiting, T.1    Raftery, A.E.2
  • 28
    • 0032333314 scopus 로고    scopus 로고
    • A composite likelihood approach to binary spatial data
    • Heagerty, P. J. and Lele, S. R. (1998). A composite likelihood approach to binary spatial data. J. Amer. Statist. Assoc. 93 1099-1111.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 1099-1111
    • Heagerty, P.J.1    Lele, S.R.2
  • 29
    • 34247263913 scopus 로고    scopus 로고
    • Lake-effect snow as the dominant control of mesic-forest distribution in Michigan, USA
    • Henne, P. D., Hu, F. S. and Cleland, D. T. (2007). Lake-effect snow as the dominant control of mesic-forest distribution in Michigan, USA. Journal of Ecology 95 517-529.
    • (2007) Journal of Ecology , vol.95 , pp. 517-529
    • Henne, P.D.1    Hu, F.S.2    Cleland, D.T.3
  • 30
    • 0001890697 scopus 로고
    • On deriving the inverse of a sum of matrices
    • Henderson, H. V. and Searle, S. R. (1981). On deriving the inverse of a sum of matrices. SIAM Review 23 53-60.
    • (1981) SIAM Review , vol.23 , pp. 53-60
    • Henderson, H.V.1    Searle, S.R.2
  • 31
    • 0024219986 scopus 로고
    • Variation in overstory biomass among glacial landforms and ecological land units in northwestern Lower Michigan
    • Host, G. E., Pregitzer, K. S., Ramm, C. W., Lusch, D. P. and Cleland, D. T. (1988). Variation in overstory biomass among glacial landforms and ecological land units in northwestern Lower Michigan. Canadian Journal of Forest Research 18 659-668.
    • (1988) Canadian Journal of Forest Research , vol.18 , pp. 659-668
    • Host, G.E.1    Pregitzer, K.S.2    Ramm, C.W.3    Lusch, D.P.4    Cleland, D.T.5
  • 35
    • 33645075433 scopus 로고    scopus 로고
    • Structured additive regression for categorical space-time data: A mixed model approach
    • Kneib, T. and Fahrmeir, L. (2006). Structured additive regression for categorical space-time data: A mixed model approach. Biometrics 62109-118.
    • (2006) Biometrics , pp. 62109-62118
    • Kneib, T.1    Fahrmeir, L.2
  • 36
    • 0034343415 scopus 로고    scopus 로고
    • Smoothing spline ANOVA models for large data sets with Bernoulli observations and the randomized GACV
    • Lin, X., Wahba, G., Xiang, D., Gao, F., Klein, R. and Klein, B. (2000). Smoothing spline ANOVA models for large data sets with Bernoulli observations and the randomized GACV. Ann. Statist. 28 1570-1600.
    • (2000) Ann. Statist. , vol.28 , pp. 1570-1600
    • Lin, X.1    Wahba, G.2    Xiang, D.3    Gao, F.4    Klein, R.5    Klein, B.6
  • 37
    • 0001434493 scopus 로고    scopus 로고
    • A Bayesian analysis of the multinomial probit model with fully identified parameters
    • McCulloch, R. E., Polson, N. G. and Rossi, P. E. (2000). A Bayesian analysis of the multinomial probit model with fully identified parameters. J. Econometrics 99 173-193.
    • (2000) J. Econometrics , vol.99 , pp. 173-193
    • McCulloch, R.E.1    Polson, N.G.2    Rossi, P.E.3
  • 38
    • 0036789610 scopus 로고    scopus 로고
    • Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique
    • McRoberts, R. E., Nelson, M. D. and Wendt, D. G. (2002). Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique. Remote Sensing of Environment 82 457-468.
    • (2002) Remote Sensing of Environment , vol.82 , pp. 457-468
    • McRoberts, R.E.1    Nelson, M.D.2    Wendt, D.G.3
  • 39
    • 33947661458 scopus 로고    scopus 로고
    • Computational techniques for spatial logistic regression with large data sets
    • Paciorek, C. (2007). Computational techniques for spatial logistic regression with large data sets. Comput. Statist. Data Anal. 51 3631-3653.
    • (2007) Comput. Statist. Data Anal. , vol.51 , pp. 3631-3653
    • Paciorek, C.1
  • 41
    • 84865382242 scopus 로고    scopus 로고
    • A multivariate nonparametric Bayesian spatial frame-work for hurricane surface wind fields
    • Reich B. J. and Fuentes, M. (2007). A multivariate nonparametric Bayesian spatial frame-work for hurricane surface wind fields. Ann. Appl. Statist. 1249-264.
    • (2007) Ann. Appl. Statist. , pp. 1249-1264
    • Reich, B.J.1    Fuentes, M.2
  • 43
    • 0032525684 scopus 로고    scopus 로고
    • An algorithm for the construction of spatial coverage designs with implementation in SPLUS
    • Royle, J. A. and Nychka, D. (1998). An algorithm for the construction of spatial coverage designs with implementation in SPLUS. Computers and Geosciences 24 479-488.
    • (1998) Computers and Geosciences , vol.24 , pp. 479-488
    • Royle, J.A.1    Nychka, D.2
  • 44
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion)
    • Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). J. Roy. Statist. Soc. Ser. B 71 1-35.
    • (2009) J. Roy. Statist. Soc. Ser. B , vol.71 , pp. 1-35
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 46
    • 0022872667 scopus 로고
    • A soilscape analysis of contrasting glacial terrains in Wisconsin
    • Schaetzl, R. J. (1986). A soilscape analysis of contrasting glacial terrains in Wisconsin. Ann. Assoc. Amer. Geographers 76 414-425.
    • (1986) Ann. Assoc. Amer. Geographers , vol.76 , pp. 414-425
    • Schaetzl, R.J.1
  • 47
  • 48
    • 69849091974 scopus 로고
    • A growth definition for stocking: Units, sampling, and interpretation
    • Stage, A. R. (1969). A growth definition for stocking: Units, sampling, and interpretation. Forest Science 15 255-275.
    • (1969) Forest Science , vol.15 , pp. 255-275
    • Stage, A.R.1
  • 50
    • 41249085244 scopus 로고    scopus 로고
    • Spatial variation of total column ozone on a global scale
    • Stein, M. L. (2007). Spatial variation of total column ozone on a global scale. Ann. Appl. Statist. 1 191-210.
    • (2007) Ann. Appl. Statist. , vol.1 , pp. 191-210
    • Stein, M.L.1
  • 51
    • 37849010186 scopus 로고    scopus 로고
    • A modeling approach for large spatial datasets
    • Stein, M. L. (2008). A modeling approach for large spatial datasets. J. Korean Statist. Soc. 37 3-10.
    • (2008) J. Korean Statist. Soc. , vol.37 , pp. 3-10
    • Stein, M.L.1
  • 52
    • 2442600120 scopus 로고    scopus 로고
    • Approximating likelihoods for large spatial datasets
    • Stein, M. L., Chi, Z. and Welty, L. J. (2004). Approximating likelihoods for large spatial datasets. J. Roy. Statist. Soc. Ser. B 66 275-296.
    • (2004) J. Roy. Statist. Soc. Ser. B , vol.66 , pp. 275-296
    • Stein, M.L.1    Chi, Z.2    Welty, L.J.3
  • 53
    • 3242666106 scopus 로고    scopus 로고
    • Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: A genetic algorithm approach
    • Tomppo, E. and Halme, M. (2004). Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: A genetic algorithm approach. Remote Sensing of Environment 92 1-20.
    • (2004) Remote Sensing of Environment , vol.92 , pp. 1-20
    • Tomppo, E.1    Halme, M.2
  • 54
    • 0000497615 scopus 로고
    • Estimation and model identification for continuous spatial processes
    • Vecchia, A. V. (1988). Estimation and model identification for continuous spatial processes. J. Roy. Statist. Soc. Ser. B 50 297-312.
    • (1988) J. Roy. Statist. Soc. Ser. B , vol.50 , pp. 297-312
    • Vecchia, A.V.1
  • 55
    • 0032525527 scopus 로고    scopus 로고
    • Modelling crossvariograms for cokriging and multivariable spatial prediction
    • Ver Hoef, J. M. and Barry, R. D. (1998). Modelling crossvariograms for cokriging and multivariable spatial prediction. J. Statist. Plann. Inference 69 275-294.
    • (1998) J. Statist. Plann. Inference , vol.69 , pp. 275-294
    • Ver Hoef, J.M.1    Barry, R.D.2
  • 58
    • 33646048012 scopus 로고    scopus 로고
    • Spatial sampling design for prediction with estimated parameters
    • Zhu, Z. and Stein, M. L. (2006). Spatial sampling design for prediction with estimated parameters. J. Agric. Biol. Environ. Statist. 11 24-49.
    • (2006) J. Agric. Biol. Environ. Statist. , vol.11 , pp. 24-49
    • Zhu, Z.1    Stein, M.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.