-
1
-
-
33746389841
-
Minimum classification error training for online handwriting recognition
-
Jul.
-
A. Biem, "Minimum classification error training for online handwriting recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 7, pp. 1041-1051, Jul. 2006.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.7
, pp. 1041-1051
-
-
Biem, A.1
-
2
-
-
8644236278
-
The role of unlabeled data in supervised learning
-
San Sebastian, Spain
-
T. Mitchell, "The role of unlabeled data in supervised learning," in Proc. 6th Int. Colloq. Cognitive Sci., San Sebastian, Spain, 1999.
-
(1999)
Proc. 6th Int. Colloq. Cognitive Sci.
-
-
Mitchell, T.1
-
3
-
-
33745456231
-
-
Dept. Comput. Sci., Univ. Wisconsin, Madison, Tech. Rep. 1530
-
X. Zhu, "Semi-supervised learning literature survey," Dept. Comput. Sci., Univ. Wisconsin, Madison, Tech. Rep. 1530, 2007.
-
(2007)
Semi-supervised Learning Literature Survey
-
-
Zhu, X.1
-
4
-
-
0005977840
-
-
Inst. Adapt. Neural Comput., Univ. Edinburgh, Edinburgh, U.K., Tech. Rep., Feb.
-
M. Seeger, "Learning with labeled and unlabeled data," Inst. Adapt. Neural Comput., Univ. Edinburgh, Edinburgh, U.K., Tech. Rep., Feb. 2001.
-
(2001)
Learning with Labeled and Unlabeled Data
-
-
Seeger, M.1
-
6
-
-
35348895580
-
Semi-supervised self-training of object detection models
-
Breckenridge, CO, Jan.
-
C. Rosenberg, M. Hebert, and H. Schneiderman, "Semi-supervised self-training of object detection models," in Proc. 7th IEEE Workshop Appl. Comput. Vis., vol. 1. Breckenridge, CO, Jan. 2005, pp. 29-36.
-
(2005)
Proc. 7th IEEE Workshop Appl. Comput. Vis.
, vol.1
, pp. 29-36
-
-
Rosenberg, C.1
Hebert, M.2
Schneiderman, H.3
-
7
-
-
85086069941
-
Learning subjective nouns using extraction pattern bootstrapping
-
E. Riloff, J. Wiebe, and T. Wilson, "Learning subjective nouns using extraction pattern bootstrapping," in Proc. 7th Conf. Natural Lang. Learn., 2003, pp. 25-32.
-
(2003)
Proc. 7th Conf. Natural Lang. Learn.
, pp. 25-32
-
-
Riloff, E.1
Wiebe, J.2
Wilson, T.3
-
8
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
San Francisco, CA
-
A. Blum and T. Mitchell, "Combining labeled and unlabeled data with co-training," in Proc. 11th Annu. Conf. Comput. Learn. Theory, San Francisco, CA, 1998, pp. 92-100.
-
(1998)
Proc. 11th Annu. Conf. Comput. Learn. Theory
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.2
-
9
-
-
0010805362
-
Learning from labeled and unlabeled data using graph mincuts
-
San Francisco, CA
-
A. Blum and S. Chawla, "Learning from labeled and unlabeled data using graph mincuts," in Proc.18th Int. Conf. Mach. Learn., San Francisco, CA, 2001, pp. 19-26.
-
(2001)
Proc.18th Int. Conf. Mach. Learn.
, pp. 19-26
-
-
Blum, A.1
Chawla, S.2
-
10
-
-
1942484960
-
Transductive learning via spectral graph partitioning
-
T. Joachims, "Transductive learning via spectral graph partitioning," in Proc. 20th Int. Conf. Mach. Learn., 2003, pp. 290-297.
-
(2003)
Proc. 20th Int. Conf. Mach. Learn.
, pp. 290-297
-
-
Joachims, T.1
-
12
-
-
70449456228
-
-
ESATSISTA, Katholieke Univ. Leuven, Leuven, Belgium, Tech. Rep. 07-122
-
J. Luts, J. A. K. Suykens, and S. Van Huffel, "Semi-supervised learning: Avoiding zero label assumptions in kernel based classifiers," ESATSISTA, Katholieke Univ. Leuven, Leuven, Belgium, Tech. Rep. 07-122,2007.
-
(2007)
Feti Semi-supervised Learning: Avoiding Zero Label Assumptions in Kernel Based Classifiers
-
-
Luts, J.1
Suykens, J.A.K.2
Van Huffel, S.3
-
14
-
-
79953812563
-
Semi-supervised Gaussian process classifiers
-
V. Sindhwani, W. Chu, and S. S. Keerthi, "Semi-supervised Gaussian process classifiers," in Proc. Int. Joint Conf. Artif. Intell., 2004, pp. 1-6.
-
(2004)
Proc. Int. Joint Conf. Artif. Intell.
, pp. 1-6
-
-
Sindhwani, V.1
Chu, W.2
Keerthi, S.S.3
-
15
-
-
33749596705
-
-
Dept. Comput. Sci., Univ. Carnegie Mellon, Pittsburgh, PA, Tech. Rep. CMU-CS-03-175
-
X. J. Zhu, J. Lafferty, and Z. Ghahramani, "Semi-supervised learning: From Gaussian fields to Gaussian processes," Dept. Comput. Sci., Univ. Carnegie Mellon, Pittsburgh, PA, Tech. Rep. CMU-CS-03-175, 2003.
-
(2003)
Semi-supervised Learning: From Gaussian Fields to Gaussian Processes
-
-
Zhu, X.J.1
Lafferty, J.2
Ghahramani, Z.3
-
16
-
-
84864039857
-
Hyperparameter and kernel learning for graph based semisupervised classification
-
A. Kapoor, Y. Qi, H. Ahn, and R. Picard, "Hyperparameter and kernel learning for graph based semisupervised classification," in Proc. Adv. Neural Inf. Process. Syst. 18, 2005, pp. 627-634.
-
(2005)
Proc. Adv. Neural Inf. Process. Syst.
, vol.18
, pp. 627-634
-
-
Kapoor, A.1
Qi, Y.2
Ahn, H.3
Picard, R.4
-
17
-
-
78951490658
-
Semisupervised classification using sparse Gaussian process regression
-
A. Patel, S. Sundararajan, and S. Shevade, "Semisupervised classification using sparse Gaussian process regression," in Proc. 21st Int. Joint Conf. Artif. Intell., 2009, pp. 1193-1198.
-
(2009)
Proc. 21st Int. Joint Conf. Artif. Intell.
, pp. 1193-1198
-
-
Patel, A.1
Sundararajan, S.2
Shevade, S.3
-
18
-
-
41549144249
-
Optimization techniques for semi-supervised support vector machines
-
O. Chapelle, V. Sindhwani, and S. S. Keerthi, "Optimization techniques for semi-supervised support vector machines," J.Mach. Learn. Res., vol. 9, pp. 203-233, Feb. 2008. (Pubitemid 351469022)
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 203-233
-
-
Chapelle, O.1
Sindhwani, V.2
Keerthi, S.S.3
-
20
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers," in Proc. 5th Annu. Workshop Comput. Learn. Theory, 1992, pp. 144-152.
-
(1992)
Proc. 5th Annu. Workshop Comput. Learn. Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
23
-
-
0000127135
-
-
S. A. Solla, and D. A. Cohn, Eds. Cambridge, MA: MIT Press
-
K. Bennett and A. Demiriz, Semi-Supervised Support Vector Machines, S. A. Solla, and D. A. Cohn, Eds. Cambridge, MA: MIT Press, 1998, pp. 368-374.
-
(1998)
Semi-Supervised Support Vector Machines
, pp. 368-374
-
-
Bennett, K.1
Demiriz, A.2
-
24
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
Bled, Slovenia
-
T. Joachims, "Transductive inference for text classification using support vector machines," in Proc. 16th Int. Conf. Mach. Learn., Bled, Slovenia, 1999, pp. 200-209.
-
(1999)
Proc. 16th Int. Conf. Mach. Learn.
, pp. 200-209
-
-
Joachims, T.1
-
25
-
-
0036454664
-
Semi-supervised support vector machines for unlabeled data classification
-
G. Fung and O. Mangasarian, "Semi-supervised support vector machines for unlabeled data classification," Optim. Methods Softw., vol. 15, no. 1, pp. 29-44, 2001. (Pubitemid 33817502)
-
(2001)
Optimization Methods and Software
, vol.15
, Issue.1
, pp. 29-44
-
-
Fung, G.1
Mangasarian, O.L.2
-
26
-
-
0037695279
-
-
Singapore: World Scientific
-
J. A. K. Suykens, T. V. Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle, Least Squares Support Vector Machines. Singapore: World Scientific, 2002.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Gestel, T.V.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
27
-
-
0242288903
-
Benchmarking least squares support vector machine classifiers
-
Jan.
-
T. Van Gestel, J. A. K. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene, B. De Moor, and J. Vandewalle, "Benchmarking least squares support vector machine classifiers," Mach. Learn., vol. 54, no. 1, pp. 5-32, Jan. 2004.
-
(2004)
Mach. Learn.
, vol.54
, Issue.1
, pp. 5-32
-
-
Van Gestel, T.1
Suykens, J.A.K.2
Baesens, B.3
Viaene, S.4
Vanthienen, J.5
Dedene, G.6
De Moor, B.7
Vandewalle, J.8
-
28
-
-
0037230867
-
Efficient computations for large least square support vector machine classifiers
-
DOI 10.1016/S0167-8655(02)00190-3, PII S0167865502001903
-
K. S. Chua, "Efficient computations for large least square support vector machine classifiers," Pattern Recognit. Lett., vol. 24, nos. 1-3, pp. 75-80, 2003. (Pubitemid 36080758)
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.1-3
, pp. 75-80
-
-
Chua, K.S.1
-
29
-
-
15344351150
-
An improved conjugate gradient scheme to the solution of least squares SVM
-
DOI 10.1109/TNN.2004.841785
-
W. Chu, C. J. Ong, and S. S. Keerthi, "An improved conjugate gradient scheme to the solution of least squares SVM," IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 498-501, Mar. 2005. (Pubitemid 40390833)
-
(2005)
IEEE Transactions on Neural Networks
, vol.16
, Issue.2
, pp. 498-501
-
-
Chu, W.1
Ong, C.J.2
Keerthi, S.S.3
-
30
-
-
8444241860
-
Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
-
DOI 10.1016/j.neunet.2004.07.002, PII S0893608004001431
-
G. C. Cawley and N. L. C. Talbot, "Fast exact leave-one-out cross-validation of sparse least-squares support vector machines," Neural Netw., vol. 17, no. 10, pp. 1467-1475, Dec. 2004. (Pubitemid 39487142)
-
(2004)
Neural Networks
, vol.17
, Issue.10
, pp. 1467-1475
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
31
-
-
40649116219
-
Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs
-
1716307, International Joint Conference on Neural Networks 2006, IJCNN '06
-
G. C. Cawley, "Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs," in Proc. Int. Joint Conf. Neural Netw., Vancouver, BC, Canada, Jul. 2006, pp. 1661-1668. (Pubitemid 351369522)
-
(2006)
IEEE International Conference on Neural Networks - Conference Proceedings
, pp. 1661-1668
-
-
Cawley, G.C.1
-
32
-
-
68249088215
-
Model selection for LS-SVM. Application to handwriting recognition
-
Dec.
-
M. M. Adankon and M. Cheriet, "Model selection for LS-SVM. Application to handwriting recognition," Pattern Recognit., vol. 42, no. 12, pp. 3264-3270, Dec. 2009.
-
(2009)
Pattern Recognit.
, vol.42
, Issue.12
, pp. 3264-3270
-
-
Adankon, M.M.1
Cheriet, M.2
-
33
-
-
0001939479
-
Sparse least squares support vector machine classifiers
-
J. A. K. Suykens, L. Lukas, and L. Vandewalle, "Sparse least squares support vector machine classifiers," in Proc. Eur. Symp. Artif. Neural Netw., 2000, pp. 37-42.
-
(2000)
Proc. Eur. Symp. Artif. Neural Netw.
, pp. 37-42
-
-
Suykens, J.A.K.1
Lukas, L.2
Vandewalle, L.3
-
34
-
-
0036825788
-
Improved sparse least-squares support vector machines [5]
-
DOI 10.1016/S0925-2312(02)00606-9, PII S0925231202006069
-
G. C. Cawley and N. L. C. Talbot, "Improved sparse least-squares support vector machines," Neurocomputing, vol. 48, nos. 1-4, pp. 1025-1031, Oct. 2002. (Pubitemid 36221542)
-
(2002)
Neurocomputing
, vol.48
, pp. 1025-1031
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
35
-
-
0037507242
-
Pruning error minimization in least squares support vector machines
-
May
-
B. J. de Kruif and T. J. de Vries, "Pruning error minimization in least squares support vector machines," IEEE Trans. Neural Netw., vol. 14, no. 3, pp. 696-702, May 2003.
-
(2003)
IEEE Trans. Neural Netw.
, vol.14
, Issue.3
, pp. 696-702
-
-
De Kruif, B.J.1
De Vries, T.J.2
-
36
-
-
34248636293
-
Fast sparse approximation for least squares support vector machine
-
DOI 10.1109/TNN.2006.889500
-
L. Jiao, L. Bo, and L. Wang, "Fast sparse approximation for least square support vector machine," IEEE Trans. Neural Netw., vol. 18, no. 3, pp. 685-697, May 2007. (Pubitemid 46773736)
-
(2007)
IEEE Transactions on Neural Networks
, vol.18
, Issue.3
, pp. 685-697
-
-
Jiao, L.1
Bo, L.2
Wang, L.3
-
37
-
-
0442277950
-
Hypothesis testing: From p values to Bayes factors
-
Dec.
-
J. I. Marden, "Hypothesis testing: From p values to Bayes factors," J. Amer. Stat. Assoc., vol. 95, no. 452, pp. 1316-1320, Dec. 2000.
-
(2000)
J. Amer. Stat. Assoc.
, vol.95
, Issue.452
, pp. 1316-1320
-
-
Marden, J.I.1
-
38
-
-
67649380729
-
Probabilistic classification vector machines
-
Jun.
-
H. Chen, P. Tino, and X. Yao, "Probabilistic classification vector machines," IEEE Trans. Neural Netw., vol. 20, no. 6, pp. 901-914, Jun. 2009.
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, Issue.6
, pp. 901-914
-
-
Chen, H.1
Tino, P.2
Yao, X.3
-
39
-
-
77957788560
-
Multiclass relevance vector machines: Sparsity and accuracy
-
Oct.
-
I. Psorakis, T. Damoulas, and M. A. Girolami, "Multiclass relevance vector machines: Sparsity and accuracy," IEEE Trans. Neural Netw., vol. 21, no. 10, pp. 1588-1598, Oct. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.10
, pp. 1588-1598
-
-
Psorakis, I.1
Damoulas, T.2
Girolami, M.A.3
-
41
-
-
84899032333
-
Probabilistic methods for support vector machines
-
P. Sollich, "Probabilistic methods for support vector machines," in Proc. Conf. 12th Adv. Neural Inf., 2000, pp. 349-355.
-
(2000)
Proc. Conf. 12th Adv. Neural Inf.
, pp. 349-355
-
-
Sollich, P.1
-
42
-
-
84864069202
-
Branch and bound for semi-supervised support vector machines
-
O. Chapelle, V. Sindhwani, and S. S. Keerthi, "Branch and bound for semi-supervised support vector machines," in Proc. Neural Inf. Syst., 2006, pp. 217-224.
-
(2006)
Proc. Neural Inf. Syst.
, pp. 217-224
-
-
Chapelle, O.1
Sindhwani, V.2
Keerthi, S.S.3
-
43
-
-
0032638628
-
Least squares support vector machine classifiers
-
Jun.
-
J. A. K. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process. Lett., vol. 9, no. 3, pp. 293-300, Jun. 1999.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
44
-
-
0036582564
-
Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel fisher discriminant analysis
-
May
-
T. V. Gestel, J. Suykens, G. Lanckriet, A. Lambrechts, B. De Moor, and J. Vandewalle, "Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel fisher discriminant analysis," Neural Comput., vol. 14, no. 5, pp. 1115-1147, May 2002.
-
(2002)
Neural Comput.
, vol.14
, Issue.5
, pp. 1115-1147
-
-
Gestel, T.V.1
Suykens, J.2
Lanckriet, G.3
Lambrechts, A.4
De Moor, B.5
Vandewalle, J.6
-
46
-
-
29344448013
-
Semi-supervised learning by entropy minimization
-
L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press
-
Y. Grandvalet and Y. Bengio, "Semi-supervised learning by entropy minimization," in Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press, 2004, pp. 529-536.
-
(2004)
Advances in Neural Information Processing Systems
, vol.17
, pp. 529-536
-
-
Grandvalet, Y.1
Bengio, Y.2
-
47
-
-
0042878370
-
Partially labeled classification with Markov random walks
-
M. Szummer and T. Jaakkola, "Partially labeled classification with Markov random walks," in Proc. Adv. Neural Inf. Process. Syst., vol. 14. 2001, pp. 1-8.
-
(2001)
Proc. Adv. Neural Inf. Process. Syst.
, vol.14
, pp. 1-8
-
-
Szummer, M.1
Jaakkola, T.2
-
48
-
-
77958454206
-
Genetic algorithm based training for semi-supervised SVM
-
Nov.
-
M. M. Adankon and M. Cheriet, "Genetic algorithm based training for semi-supervised SVM," Neural Comput. Appl., vol. 19, no. 8, pp. 1197-1206, Nov. 2010.
-
(2010)
Neural Comput. Appl.
, vol.19
, Issue.8
, pp. 1197-1206
-
-
Adankon, M.M.1
Cheriet, M.2
-
49
-
-
33747128180
-
Large scale transductive SVM
-
Aug.
-
R. Collobert, F. Sinz, J. Weston, and L. Bottou, "Large scale transductive SVM," J. Mach. Learn. Res., vol. 7, pp. 1687-1712, Aug. 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1687-1712
-
-
Collobert, R.1
Sinz, F.2
Weston, J.3
Bottou, L.4
-
50
-
-
27744569713
-
Bayesian approach to feature selection and parameter tuning for support vector machine classifiers
-
DOI 10.1016/j.neunet.2005.06.044, PII S0893608005001309
-
C. Gold, A. Holub, and P. Sollich, "Bayesian approach to feature selection and parameter tuning for support vector machine classifiers," Neural Netw., vol. 18, nos. 5-6, pp. 693-701, Jun. 2005. (Pubitemid 43186590)
-
(2005)
Neural Networks
, vol.18
, Issue.5-6
, pp. 693-701
-
-
Gold, C.1
Holub, A.2
Sollich, P.3
|