메뉴 건너뛰기




Volumn 22, Issue 4, 2011, Pages 513-524

Semisupervised learning using Bayesian interpretation: Application to LS-SVM

Author keywords

Bayesian inference; kernel machine; least square support vector machine (SVM); semisupervised learning; SVM

Indexed keywords

BAYESIAN INFERENCE; KERNEL MACHINE; LEAST-SQUARE SUPPORT VECTOR MACHINES; SEMI-SUPERVISED LEARNING; SVM;

EID: 79953812916     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2011.2105888     Document Type: Article
Times cited : (43)

References (50)
  • 1
    • 33746389841 scopus 로고    scopus 로고
    • Minimum classification error training for online handwriting recognition
    • Jul.
    • A. Biem, "Minimum classification error training for online handwriting recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 7, pp. 1041-1051, Jul. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.7 , pp. 1041-1051
    • Biem, A.1
  • 2
    • 8644236278 scopus 로고    scopus 로고
    • The role of unlabeled data in supervised learning
    • San Sebastian, Spain
    • T. Mitchell, "The role of unlabeled data in supervised learning," in Proc. 6th Int. Colloq. Cognitive Sci., San Sebastian, Spain, 1999.
    • (1999) Proc. 6th Int. Colloq. Cognitive Sci.
    • Mitchell, T.1
  • 3
    • 33745456231 scopus 로고    scopus 로고
    • Dept. Comput. Sci., Univ. Wisconsin, Madison, Tech. Rep. 1530
    • X. Zhu, "Semi-supervised learning literature survey," Dept. Comput. Sci., Univ. Wisconsin, Madison, Tech. Rep. 1530, 2007.
    • (2007) Semi-supervised Learning Literature Survey
    • Zhu, X.1
  • 4
    • 0005977840 scopus 로고    scopus 로고
    • Inst. Adapt. Neural Comput., Univ. Edinburgh, Edinburgh, U.K., Tech. Rep., Feb.
    • M. Seeger, "Learning with labeled and unlabeled data," Inst. Adapt. Neural Comput., Univ. Edinburgh, Edinburgh, U.K., Tech. Rep., Feb. 2001.
    • (2001) Learning with Labeled and Unlabeled Data
    • Seeger, M.1
  • 8
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • San Francisco, CA
    • A. Blum and T. Mitchell, "Combining labeled and unlabeled data with co-training," in Proc. 11th Annu. Conf. Comput. Learn. Theory, San Francisco, CA, 1998, pp. 92-100.
    • (1998) Proc. 11th Annu. Conf. Comput. Learn. Theory , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 9
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • San Francisco, CA
    • A. Blum and S. Chawla, "Learning from labeled and unlabeled data using graph mincuts," in Proc.18th Int. Conf. Mach. Learn., San Francisco, CA, 2001, pp. 19-26.
    • (2001) Proc.18th Int. Conf. Mach. Learn. , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 10
    • 1942484960 scopus 로고    scopus 로고
    • Transductive learning via spectral graph partitioning
    • T. Joachims, "Transductive learning via spectral graph partitioning," in Proc. 20th Int. Conf. Mach. Learn., 2003, pp. 290-297.
    • (2003) Proc. 20th Int. Conf. Mach. Learn. , pp. 290-297
    • Joachims, T.1
  • 16
    • 84864039857 scopus 로고    scopus 로고
    • Hyperparameter and kernel learning for graph based semisupervised classification
    • A. Kapoor, Y. Qi, H. Ahn, and R. Picard, "Hyperparameter and kernel learning for graph based semisupervised classification," in Proc. Adv. Neural Inf. Process. Syst. 18, 2005, pp. 627-634.
    • (2005) Proc. Adv. Neural Inf. Process. Syst. , vol.18 , pp. 627-634
    • Kapoor, A.1    Qi, Y.2    Ahn, H.3    Picard, R.4
  • 18
    • 41549144249 scopus 로고    scopus 로고
    • Optimization techniques for semi-supervised support vector machines
    • O. Chapelle, V. Sindhwani, and S. S. Keerthi, "Optimization techniques for semi-supervised support vector machines," J.Mach. Learn. Res., vol. 9, pp. 203-233, Feb. 2008. (Pubitemid 351469022)
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 203-233
    • Chapelle, O.1    Sindhwani, V.2    Keerthi, S.S.3
  • 24
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Bled, Slovenia
    • T. Joachims, "Transductive inference for text classification using support vector machines," in Proc. 16th Int. Conf. Mach. Learn., Bled, Slovenia, 1999, pp. 200-209.
    • (1999) Proc. 16th Int. Conf. Mach. Learn. , pp. 200-209
    • Joachims, T.1
  • 25
    • 0036454664 scopus 로고    scopus 로고
    • Semi-supervised support vector machines for unlabeled data classification
    • G. Fung and O. Mangasarian, "Semi-supervised support vector machines for unlabeled data classification," Optim. Methods Softw., vol. 15, no. 1, pp. 29-44, 2001. (Pubitemid 33817502)
    • (2001) Optimization Methods and Software , vol.15 , Issue.1 , pp. 29-44
    • Fung, G.1    Mangasarian, O.L.2
  • 28
    • 0037230867 scopus 로고    scopus 로고
    • Efficient computations for large least square support vector machine classifiers
    • DOI 10.1016/S0167-8655(02)00190-3, PII S0167865502001903
    • K. S. Chua, "Efficient computations for large least square support vector machine classifiers," Pattern Recognit. Lett., vol. 24, nos. 1-3, pp. 75-80, 2003. (Pubitemid 36080758)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.1-3 , pp. 75-80
    • Chua, K.S.1
  • 29
    • 15344351150 scopus 로고    scopus 로고
    • An improved conjugate gradient scheme to the solution of least squares SVM
    • DOI 10.1109/TNN.2004.841785
    • W. Chu, C. J. Ong, and S. S. Keerthi, "An improved conjugate gradient scheme to the solution of least squares SVM," IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 498-501, Mar. 2005. (Pubitemid 40390833)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.2 , pp. 498-501
    • Chu, W.1    Ong, C.J.2    Keerthi, S.S.3
  • 30
    • 8444241860 scopus 로고    scopus 로고
    • Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
    • DOI 10.1016/j.neunet.2004.07.002, PII S0893608004001431
    • G. C. Cawley and N. L. C. Talbot, "Fast exact leave-one-out cross-validation of sparse least-squares support vector machines," Neural Netw., vol. 17, no. 10, pp. 1467-1475, Dec. 2004. (Pubitemid 39487142)
    • (2004) Neural Networks , vol.17 , Issue.10 , pp. 1467-1475
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 31
    • 40649116219 scopus 로고    scopus 로고
    • Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs
    • 1716307, International Joint Conference on Neural Networks 2006, IJCNN '06
    • G. C. Cawley, "Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs," in Proc. Int. Joint Conf. Neural Netw., Vancouver, BC, Canada, Jul. 2006, pp. 1661-1668. (Pubitemid 351369522)
    • (2006) IEEE International Conference on Neural Networks - Conference Proceedings , pp. 1661-1668
    • Cawley, G.C.1
  • 32
    • 68249088215 scopus 로고    scopus 로고
    • Model selection for LS-SVM. Application to handwriting recognition
    • Dec.
    • M. M. Adankon and M. Cheriet, "Model selection for LS-SVM. Application to handwriting recognition," Pattern Recognit., vol. 42, no. 12, pp. 3264-3270, Dec. 2009.
    • (2009) Pattern Recognit. , vol.42 , Issue.12 , pp. 3264-3270
    • Adankon, M.M.1    Cheriet, M.2
  • 34
    • 0036825788 scopus 로고    scopus 로고
    • Improved sparse least-squares support vector machines [5]
    • DOI 10.1016/S0925-2312(02)00606-9, PII S0925231202006069
    • G. C. Cawley and N. L. C. Talbot, "Improved sparse least-squares support vector machines," Neurocomputing, vol. 48, nos. 1-4, pp. 1025-1031, Oct. 2002. (Pubitemid 36221542)
    • (2002) Neurocomputing , vol.48 , pp. 1025-1031
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 35
    • 0037507242 scopus 로고    scopus 로고
    • Pruning error minimization in least squares support vector machines
    • May
    • B. J. de Kruif and T. J. de Vries, "Pruning error minimization in least squares support vector machines," IEEE Trans. Neural Netw., vol. 14, no. 3, pp. 696-702, May 2003.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.3 , pp. 696-702
    • De Kruif, B.J.1    De Vries, T.J.2
  • 36
    • 34248636293 scopus 로고    scopus 로고
    • Fast sparse approximation for least squares support vector machine
    • DOI 10.1109/TNN.2006.889500
    • L. Jiao, L. Bo, and L. Wang, "Fast sparse approximation for least square support vector machine," IEEE Trans. Neural Netw., vol. 18, no. 3, pp. 685-697, May 2007. (Pubitemid 46773736)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.3 , pp. 685-697
    • Jiao, L.1    Bo, L.2    Wang, L.3
  • 37
    • 0442277950 scopus 로고    scopus 로고
    • Hypothesis testing: From p values to Bayes factors
    • Dec.
    • J. I. Marden, "Hypothesis testing: From p values to Bayes factors," J. Amer. Stat. Assoc., vol. 95, no. 452, pp. 1316-1320, Dec. 2000.
    • (2000) J. Amer. Stat. Assoc. , vol.95 , Issue.452 , pp. 1316-1320
    • Marden, J.I.1
  • 38
    • 67649380729 scopus 로고    scopus 로고
    • Probabilistic classification vector machines
    • Jun.
    • H. Chen, P. Tino, and X. Yao, "Probabilistic classification vector machines," IEEE Trans. Neural Netw., vol. 20, no. 6, pp. 901-914, Jun. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.6 , pp. 901-914
    • Chen, H.1    Tino, P.2    Yao, X.3
  • 39
    • 77957788560 scopus 로고    scopus 로고
    • Multiclass relevance vector machines: Sparsity and accuracy
    • Oct.
    • I. Psorakis, T. Damoulas, and M. A. Girolami, "Multiclass relevance vector machines: Sparsity and accuracy," IEEE Trans. Neural Netw., vol. 21, no. 10, pp. 1588-1598, Oct. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.10 , pp. 1588-1598
    • Psorakis, I.1    Damoulas, T.2    Girolami, M.A.3
  • 41
    • 84899032333 scopus 로고    scopus 로고
    • Probabilistic methods for support vector machines
    • P. Sollich, "Probabilistic methods for support vector machines," in Proc. Conf. 12th Adv. Neural Inf., 2000, pp. 349-355.
    • (2000) Proc. Conf. 12th Adv. Neural Inf. , pp. 349-355
    • Sollich, P.1
  • 42
    • 84864069202 scopus 로고    scopus 로고
    • Branch and bound for semi-supervised support vector machines
    • O. Chapelle, V. Sindhwani, and S. S. Keerthi, "Branch and bound for semi-supervised support vector machines," in Proc. Neural Inf. Syst., 2006, pp. 217-224.
    • (2006) Proc. Neural Inf. Syst. , pp. 217-224
    • Chapelle, O.1    Sindhwani, V.2    Keerthi, S.S.3
  • 43
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Jun.
    • J. A. K. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process. Lett., vol. 9, no. 3, pp. 293-300, Jun. 1999.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 44
    • 0036582564 scopus 로고    scopus 로고
    • Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel fisher discriminant analysis
    • May
    • T. V. Gestel, J. Suykens, G. Lanckriet, A. Lambrechts, B. De Moor, and J. Vandewalle, "Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel fisher discriminant analysis," Neural Comput., vol. 14, no. 5, pp. 1115-1147, May 2002.
    • (2002) Neural Comput. , vol.14 , Issue.5 , pp. 1115-1147
    • Gestel, T.V.1    Suykens, J.2    Lanckriet, G.3    Lambrechts, A.4    De Moor, B.5    Vandewalle, J.6
  • 46
    • 29344448013 scopus 로고    scopus 로고
    • Semi-supervised learning by entropy minimization
    • L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press
    • Y. Grandvalet and Y. Bengio, "Semi-supervised learning by entropy minimization," in Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press, 2004, pp. 529-536.
    • (2004) Advances in Neural Information Processing Systems , vol.17 , pp. 529-536
    • Grandvalet, Y.1    Bengio, Y.2
  • 47
    • 0042878370 scopus 로고    scopus 로고
    • Partially labeled classification with Markov random walks
    • M. Szummer and T. Jaakkola, "Partially labeled classification with Markov random walks," in Proc. Adv. Neural Inf. Process. Syst., vol. 14. 2001, pp. 1-8.
    • (2001) Proc. Adv. Neural Inf. Process. Syst. , vol.14 , pp. 1-8
    • Szummer, M.1    Jaakkola, T.2
  • 48
    • 77958454206 scopus 로고    scopus 로고
    • Genetic algorithm based training for semi-supervised SVM
    • Nov.
    • M. M. Adankon and M. Cheriet, "Genetic algorithm based training for semi-supervised SVM," Neural Comput. Appl., vol. 19, no. 8, pp. 1197-1206, Nov. 2010.
    • (2010) Neural Comput. Appl. , vol.19 , Issue.8 , pp. 1197-1206
    • Adankon, M.M.1    Cheriet, M.2
  • 50
    • 27744569713 scopus 로고    scopus 로고
    • Bayesian approach to feature selection and parameter tuning for support vector machine classifiers
    • DOI 10.1016/j.neunet.2005.06.044, PII S0893608005001309
    • C. Gold, A. Holub, and P. Sollich, "Bayesian approach to feature selection and parameter tuning for support vector machine classifiers," Neural Netw., vol. 18, nos. 5-6, pp. 693-701, Jun. 2005. (Pubitemid 43186590)
    • (2005) Neural Networks , vol.18 , Issue.5-6 , pp. 693-701
    • Gold, C.1    Holub, A.2    Sollich, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.