메뉴 건너뛰기




Volumn 16, Issue 9, 2011, Pages 3655-3664

Homotopy analysis method for solving a class of fractional partial differential equations

Author keywords

Fractional partial differential equations; Homotopy analysis method; Riesz

Indexed keywords

PARTIAL DIFFERENTIAL EQUATIONS;

EID: 79953722215     PISSN: 10075704     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cnsns.2010.12.040     Document Type: Article
Times cited : (47)

References (18)
  • 1
    • 33745712077 scopus 로고    scopus 로고
    • Numerical treatment of an initial-boundary value problem for fractional partial differential equations
    • Ciesielski M., Leszczynski J. Numerical treatment of an initial-boundary value problem for fractional partial differential equations. Signal Process 2006, 86:2619-2631.
    • (2006) Signal Process , vol.86 , pp. 2619-2631
    • Ciesielski, M.1    Leszczynski, J.2
  • 2
    • 0141961682 scopus 로고    scopus 로고
    • Fractal scaling of fractional diffusion processes
    • Leith J.R. Fractal scaling of fractional diffusion processes. Signal Process 2003, 83:2397-2409.
    • (2003) Signal Process , vol.83 , pp. 2397-2409
    • Leith, J.R.1
  • 4
    • 77957907967 scopus 로고    scopus 로고
    • The fundamental solutions of the space, space-time Riesz fractional partial differential equations with periodic conditions
    • Zhang H., Liu F. The fundamental solutions of the space, space-time Riesz fractional partial differential equations with periodic conditions. Numer. Math. J. Chinese Univ. (English Ser.) 2007, 2(16):181-192.
    • (2007) Numer. Math. J. Chinese Univ. (English Ser.) , vol.2 , Issue.16 , pp. 181-192
    • Zhang, H.1    Liu, F.2
  • 5
    • 33646938767 scopus 로고    scopus 로고
    • Fractional dynamics of systems with long-range interaction
    • Tarasov V.E., Zaslavsky M. Fractional dynamics of systems with long-range interaction. Comm Nonlin Sci Numer Simul 2006, 11:885-898.
    • (2006) Comm Nonlin Sci Numer Simul , vol.11 , pp. 885-898
    • Tarasov, V.E.1    Zaslavsky, M.2
  • 6
    • 0141996364 scopus 로고    scopus 로고
    • Fully discrete random walks for space-time fractional diffusion equations
    • Gorenflo R., Vivoli A. Fully discrete random walks for space-time fractional diffusion equations. Signal Process 2003, 83:2411-2420.
    • (2003) Signal Process , vol.83 , pp. 2411-2420
    • Gorenflo, R.1    Vivoli, A.2
  • 7
    • 77957917928 scopus 로고    scopus 로고
    • The variational iteration method for solving Riesz fractional partial differential equations
    • Elsaid A. The variational iteration method for solving Riesz fractional partial differential equations. Comput Math Appl 2010, 60:1940-1947.
    • (2010) Comput Math Appl , vol.60 , pp. 1940-1947
    • Elsaid, A.1
  • 8
    • 69249214155 scopus 로고    scopus 로고
    • Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
    • Yang Q., Liu F., Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl Math Model 2010, 34:200-218.
    • (2010) Appl Math Model , vol.34 , pp. 200-218
    • Yang, Q.1    Liu, F.2    Turner, I.3
  • 9
    • 67349098149 scopus 로고    scopus 로고
    • Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation
    • Lin R., Liu F., Anh V., Turner I. Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl Math Comput 2009, 212:435-445.
    • (2009) Appl Math Comput , vol.212 , pp. 435-445
    • Lin, R.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 10
    • 85196153951 scopus 로고
    • The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University
    • Liao SJ. The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University 1992.
    • (1992)
    • Liao, S.J.1
  • 11
    • 0000615571 scopus 로고
    • An approximate solution technique which does not depend upon small parameters: a special example
    • Liao S.J. An approximate solution technique which does not depend upon small parameters: a special example. Int J Nonlinear Mech 1995, 30:371-380.
    • (1995) Int J Nonlinear Mech , vol.30 , pp. 371-380
    • Liao, S.J.1
  • 13
    • 0141961626 scopus 로고    scopus 로고
    • On the homotopy analysis method for nonlinear problems
    • Liao S.J. On the homotopy analysis method for nonlinear problems. Appl Math Comput 2004, 147:499-513.
    • (2004) Appl Math Comput , vol.147 , pp. 499-513
    • Liao, S.J.1
  • 14
    • 70350378693 scopus 로고    scopus 로고
    • A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations
    • Odibat Z., Momani S., Xu H. A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl Math Model 2010, 34:593-600.
    • (2010) Appl Math Model , vol.34 , pp. 593-600
    • Odibat, Z.1    Momani, S.2    Xu, H.3
  • 15
    • 74249121146 scopus 로고    scopus 로고
    • Homotopy analysis method for solving multi-term linear and nonlinear diffusion wave equations of fractional order
    • Jafari H., Golbabai A., Seifi S., Sayevand K. Homotopy analysis method for solving multi-term linear and nonlinear diffusion wave equations of fractional order. Comput Math Appl 2010, 59:1337-1344.
    • (2010) Comput Math Appl , vol.59 , pp. 1337-1344
    • Jafari, H.1    Golbabai, A.2    Seifi, S.3    Sayevand, K.4
  • 16
    • 65449123574 scopus 로고    scopus 로고
    • Solving the fractional BBM-Burgers equation using the homotopy analysis method
    • Song L., Zhang H. Solving the fractional BBM-Burgers equation using the homotopy analysis method. Chaos Soliton Fract 2009, 40:1616-1622.
    • (2009) Chaos Soliton Fract , vol.40 , pp. 1616-1622
    • Song, L.1    Zhang, H.2
  • 18
    • 34047158626 scopus 로고    scopus 로고
    • An algorithm for solving the fractional convection-diffusion equation with nonlinear source term
    • Momani S. An algorithm for solving the fractional convection-diffusion equation with nonlinear source term. Comm Nonlin Sci Numer Simul 2007, 12:1283-1290.
    • (2007) Comm Nonlin Sci Numer Simul , vol.12 , pp. 1283-1290
    • Momani, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.