-
1
-
-
33745712077
-
Numerical treatment of an initial-boundary value problem for fractional partial differential equations
-
Ciesielski M., Leszczynski J. Numerical treatment of an initial-boundary value problem for fractional partial differential equations. Signal Process 2006, 86:2619-2631.
-
(2006)
Signal Process
, vol.86
, pp. 2619-2631
-
-
Ciesielski, M.1
Leszczynski, J.2
-
2
-
-
0141961682
-
Fractal scaling of fractional diffusion processes
-
Leith J.R. Fractal scaling of fractional diffusion processes. Signal Process 2003, 83:2397-2409.
-
(2003)
Signal Process
, vol.83
, pp. 2397-2409
-
-
Leith, J.R.1
-
3
-
-
0036828301
-
Discrete random walk models for space-time fractional diffusion
-
Gorenflo R., Mainardi F., Moretti D., Pagnini G., Paradisi P. Discrete random walk models for space-time fractional diffusion. Chem Phys 2002, 284:521-541.
-
(2002)
Chem Phys
, vol.284
, pp. 521-541
-
-
Gorenflo, R.1
Mainardi, F.2
Moretti, D.3
Pagnini, G.4
Paradisi, P.5
-
4
-
-
77957907967
-
The fundamental solutions of the space, space-time Riesz fractional partial differential equations with periodic conditions
-
Zhang H., Liu F. The fundamental solutions of the space, space-time Riesz fractional partial differential equations with periodic conditions. Numer. Math. J. Chinese Univ. (English Ser.) 2007, 2(16):181-192.
-
(2007)
Numer. Math. J. Chinese Univ. (English Ser.)
, vol.2
, Issue.16
, pp. 181-192
-
-
Zhang, H.1
Liu, F.2
-
5
-
-
33646938767
-
Fractional dynamics of systems with long-range interaction
-
Tarasov V.E., Zaslavsky M. Fractional dynamics of systems with long-range interaction. Comm Nonlin Sci Numer Simul 2006, 11:885-898.
-
(2006)
Comm Nonlin Sci Numer Simul
, vol.11
, pp. 885-898
-
-
Tarasov, V.E.1
Zaslavsky, M.2
-
6
-
-
0141996364
-
Fully discrete random walks for space-time fractional diffusion equations
-
Gorenflo R., Vivoli A. Fully discrete random walks for space-time fractional diffusion equations. Signal Process 2003, 83:2411-2420.
-
(2003)
Signal Process
, vol.83
, pp. 2411-2420
-
-
Gorenflo, R.1
Vivoli, A.2
-
7
-
-
77957917928
-
The variational iteration method for solving Riesz fractional partial differential equations
-
Elsaid A. The variational iteration method for solving Riesz fractional partial differential equations. Comput Math Appl 2010, 60:1940-1947.
-
(2010)
Comput Math Appl
, vol.60
, pp. 1940-1947
-
-
Elsaid, A.1
-
8
-
-
69249214155
-
Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
-
Yang Q., Liu F., Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl Math Model 2010, 34:200-218.
-
(2010)
Appl Math Model
, vol.34
, pp. 200-218
-
-
Yang, Q.1
Liu, F.2
Turner, I.3
-
9
-
-
67349098149
-
Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation
-
Lin R., Liu F., Anh V., Turner I. Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl Math Comput 2009, 212:435-445.
-
(2009)
Appl Math Comput
, vol.212
, pp. 435-445
-
-
Lin, R.1
Liu, F.2
Anh, V.3
Turner, I.4
-
10
-
-
85196153951
-
-
The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University
-
Liao SJ. The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University 1992.
-
(1992)
-
-
Liao, S.J.1
-
11
-
-
0000615571
-
An approximate solution technique which does not depend upon small parameters: a special example
-
Liao S.J. An approximate solution technique which does not depend upon small parameters: a special example. Int J Nonlinear Mech 1995, 30:371-380.
-
(1995)
Int J Nonlinear Mech
, vol.30
, pp. 371-380
-
-
Liao, S.J.1
-
13
-
-
0141961626
-
On the homotopy analysis method for nonlinear problems
-
Liao S.J. On the homotopy analysis method for nonlinear problems. Appl Math Comput 2004, 147:499-513.
-
(2004)
Appl Math Comput
, vol.147
, pp. 499-513
-
-
Liao, S.J.1
-
14
-
-
70350378693
-
A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations
-
Odibat Z., Momani S., Xu H. A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl Math Model 2010, 34:593-600.
-
(2010)
Appl Math Model
, vol.34
, pp. 593-600
-
-
Odibat, Z.1
Momani, S.2
Xu, H.3
-
15
-
-
74249121146
-
Homotopy analysis method for solving multi-term linear and nonlinear diffusion wave equations of fractional order
-
Jafari H., Golbabai A., Seifi S., Sayevand K. Homotopy analysis method for solving multi-term linear and nonlinear diffusion wave equations of fractional order. Comput Math Appl 2010, 59:1337-1344.
-
(2010)
Comput Math Appl
, vol.59
, pp. 1337-1344
-
-
Jafari, H.1
Golbabai, A.2
Seifi, S.3
Sayevand, K.4
-
16
-
-
65449123574
-
Solving the fractional BBM-Burgers equation using the homotopy analysis method
-
Song L., Zhang H. Solving the fractional BBM-Burgers equation using the homotopy analysis method. Chaos Soliton Fract 2009, 40:1616-1622.
-
(2009)
Chaos Soliton Fract
, vol.40
, pp. 1616-1622
-
-
Song, L.1
Zhang, H.2
-
18
-
-
34047158626
-
An algorithm for solving the fractional convection-diffusion equation with nonlinear source term
-
Momani S. An algorithm for solving the fractional convection-diffusion equation with nonlinear source term. Comm Nonlin Sci Numer Simul 2007, 12:1283-1290.
-
(2007)
Comm Nonlin Sci Numer Simul
, vol.12
, pp. 1283-1290
-
-
Momani, S.1
|