메뉴 건너뛰기




Volumn 15, Issue 2, 2011, Pages 173-192

Evaluating association rules and decision trees to predict multiple target attributes

Author keywords

Association rule; classification; decision tree; search constraint

Indexed keywords

ASSOCIATION RULE MINING; CERTAIN RULE; CLASSIFICATION; DATA MINING TECHNIQUES; DATA SETS; EXPERIMENTAL EVALUATION; MEDICAL DATA; MEDICAL MEASUREMENT; MINE RULES; MULTIPLE TARGETS; PREDICTIVE RULES; RISK FACTORS; SEARCH CONSTRAINT;

EID: 79953305116     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/IDA-2010-0462     Document Type: Article
Times cited : (31)

References (32)
  • 1
    • 0038313118 scopus 로고    scopus 로고
    • Strong associationrule mining for largescale geneexpression data analysis: A case study on human SAGE data
    • C. Becquet, S. Blachon, B. Jeudy, J.F. Boulicaut and O. Gandrillon, Strong associationrule mining for largescale geneexpression data analysis: A case study on human SAGE data, Genom Biol 3(12) (2002).
    • (2002) Genom Biol , vol.3 , Issue.12
    • Becquet, C.1    Blachon, S.2    Jeudy, B.3    Boulicaut, J.F.4    Gandrillon, O.5
  • 6
    • 0142008547 scopus 로고    scopus 로고
    • DBC: A condensed representation of frequent patterns for efficient mining
    • A. Bykowski and C. Rigotti, DBC: A condensed representation of frequent patterns for efficient mining, Information Systems 28(8) (2003), 949-977.
    • (2003) Information Systems , vol.28 , Issue.8 , pp. 949-977
    • Bykowski, A.1    Rigotti, C.2
  • 7
    • 0142012105 scopus 로고    scopus 로고
    • Application of a data mining technique to analyze coprescription patterns for antacids in Taiwan
    • T.J. Chen, L.F. Chou and S.J. Hwang, Application of a data mining technique to analyze coprescription patterns for antacids in Taiwan, Clin Ther 25(9) (2003), 2453-2463.
    • (2003) Clin Ther , vol.25 , Issue.9 , pp. 2453-2463
    • Chen, T.J.1    Chou, L.F.2    Hwang, S.J.3
  • 9
    • 0037245822 scopus 로고    scopus 로고
    • Mining gene expression databases for association rules
    • DOI 10.1093/bioinformatics/19.1.79
    • C. Creighton and S. Hanash,Mining gene expression databases for association rules, Bioinformatics 19(1) (2003), 79-86. (Pubitemid 36150183)
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 79-86
    • Creighton, C.1    Hanash, S.2
  • 10
    • 0035178849 scopus 로고    scopus 로고
    • Mining association rules with improved semantics in medical databases
    • DOI 10.1016/S0933-3657(00)00092-0, PII S0933365700000920
    • M. Delgado, D. Sanchez, M.J. Martin Bautista and M.A. Vila, Mining association rules with improved semantics in medical databases, Artificial Intelligence in Medicine 21(1-3) (2001), 241-245. (Pubitemid 32012671)
    • (2001) Artificial Intelligence in Medicine , vol.21 , Issue.1-3 , pp. 241-245
    • Delgado, M.1    Sanchez, D.2    Martin-Bautista, M.J.3    Vila, M.-A.4
  • 11
    • 0034571583 scopus 로고    scopus 로고
    • Mining association rules from a pediatric primary care decision support system
    • S.M. Down and M.Y. Wallace, Mining association rules from a pediatric primary care decision support system, in: Proc of AMIA Symp, 2000, pp. 200-204.
    • (2000) Proc of AMIA Symp , pp. 200-204
    • Down, S.M.1    Wallace, M.Y.2
  • 14
    • 0242647897 scopus 로고    scopus 로고
    • Understanding the crucial differences between classification and association rules- A position paper
    • A. Freitas, Understanding the crucial differences between classification and association rules - a position paper, SIGKDD Explorations 2(1) (2000), 65-69.
    • (2000) SIGKDD Explorations , vol.2 , Issue.1 , pp. 65-69
    • Freitas, A.1
  • 17
    • 41749106451 scopus 로고    scopus 로고
    • An efficient incremental mining algorithmQSD
    • J. Huang, S. Chen and H. Kuo, An efficient incremental mining algorithmQSD, Intelligent Data Analysis 11(3) (2007), 265-278.
    • (2007) Intelligent Data Analysis , vol.11 , Issue.3 , pp. 265-278
    • Huang, J.1    Chen, S.2    Kuo, H.3
  • 18
    • 0038122164 scopus 로고    scopus 로고
    • Concise representation of frequent patterns based on disjunctionfree generators
    • M. Kryszkiewicz, Concise representation of frequent patterns based on disjunctionfree generators, in: Proc. IEEE ICDM Conference, 2001, pp. 305-312.
    • (2001) Proc. IEEE ICDM Conference , pp. 305-312
    • Kryszkiewicz, M.1
  • 20
    • 0031149979 scopus 로고    scopus 로고
    • Reasoning requirements for diagnosis of heart disease
    • DOI 10.1016/S0933-3657(97)00381-3, PII S0933365797003813
    • W.J. Long, H.S. Fraser and S. Naimi, Reasoning requirements for diagnosis of heart disease, Artificial Intelligence in Medicine 10(1) (1997), 5-24. (Pubitemid 27239415)
    • (1997) Artificial Intelligence in Medicine , vol.10 , Issue.1 , pp. 5-24
    • Long, W.J.1    Fraser, H.2    Naimi, S.3
  • 21
    • 33645714452 scopus 로고    scopus 로고
    • Association rule discovery with the train and test approach for heart disease prediction
    • C. Ordonez, Association rule discovery with the train and test approach for heart disease prediction, IEEE Transactions on Information Technology in Biomedicine (TITB) 10(2) (2006), 334-343.
    • (2006) IEEE Transactions on Information Technology in Biomedicine (TITB) , vol.10 , Issue.2 , pp. 334-343
    • Ordonez, C.1
  • 24
    • 65449168346 scopus 로고    scopus 로고
    • Models for association rules based on clustering and correlation
    • C. Ordonez, Models for association rules based on clustering and correlation. Intelligent Data Analysis 13(2) (2009), 337-358.
    • (2009) Intelligent Data Analysis , vol.13 , Issue.2 , pp. 337-358
    • Ordonez, C.1
  • 26
    • 33645538917 scopus 로고    scopus 로고
    • Constraining and summarizing association rules in medical data
    • DOI 10.1007/s10115-005-0226-5
    • C. Ordonez, N. Ezquerra and C.A. Santana, Constraining and summarizing association rules in medical data, Knowledge and Information Systems (KAIS) 9(3) (2006), 259-283. (Pubitemid 43507134)
    • (2006) Knowledge and Information Systems , vol.9 , Issue.3 , pp. 259-283
    • Ordonez, C.1    Ezquerra, N.2    Santana, C.A.3
  • 28
    • 0036083294 scopus 로고    scopus 로고
    • Extraction of knowledge on protein-protein interaction by association rule discovery
    • T. Oyama, K. Kitano, T. Satou and T. Ito, Extraction of knowledge on proteinprotein interaction by association rule discovery, Bioinformatics 18(5) (2002), 705-714. (Pubitemid 34679117)
    • (2002) Bioinformatics , vol.18 , Issue.5 , pp. 705-714
    • Oyama, T.1    Kitano, K.2    Satou, K.3    Ito, T.4
  • 29
    • 33645548158 scopus 로고    scopus 로고
    • Exploratory medical knowledge discovery: Experiences and issues
    • J.F. Roddick, P. Fule and W.J. Graco, Exploratory medical knowledge discovery: Experiences and issues, SIGKDD Explorations 5(1) (2003), 94-99.
    • (2003) SIGKDD Explorations , vol.5 , Issue.1 , pp. 94-99
    • Roddick, J.F.1    Fule, P.2    Graco, W.J.3
  • 30
    • 41849106846 scopus 로고    scopus 로고
    • Approximate mining of frequent patterns on streams
    • C. Silvestri and S. Orlando, Approximate mining of frequent patterns on streams, Intelligent Data Analysis 11(1) (2007), 49-73.
    • (2007) Intelligent Data Analysis , vol.11 , Issue.1 , pp. 49-73
    • Silvestri, C.1    Orlando, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.