-
1
-
-
34250824768
-
-
Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 3410
-
-
Fürstner, A.1
Davies, P.W.2
-
2
-
-
33845546747
-
-
Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896
-
(2006)
Angew. Chem., Int. Ed.
, vol.45
, pp. 7896
-
-
Hashmi, A.S.K.1
Hutchings, G.J.2
-
4
-
-
51049105959
-
-
Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351
-
(2008)
Chem. Rev.
, vol.108
, pp. 3351
-
-
Gorin, D.J.1
Sherry, B.D.2
Toste, F.D.3
-
6
-
-
27544467800
-
-
For migration of allyl group, see selected examples
-
For migration of allyl group, see selected examples: Fürstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005, 127, 15024
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 15024
-
-
Fürstner, A.1
Davies, P.W.2
-
7
-
-
0038081446
-
-
Fürstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 6785
-
-
Fürstner, A.1
Szillat, H.2
Stelzer, F.3
-
8
-
-
0035814401
-
-
Fürstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 11863
-
-
Fürstner, A.1
Stelzer, F.2
Szillat, H.3
-
9
-
-
0001242798
-
-
Cacchi, S.; Fabrizi, G.; Pace, P. J. Org. Chem. 1998, 63, 1001
-
(1998)
J. Org. Chem.
, vol.63
, pp. 1001
-
-
Cacchi, S.1
Fabrizi, G.2
Pace, P.3
-
10
-
-
38749084207
-
-
Nakamura, I.; Chan, C. W.; Araki, T.; Terada, M.; Yamamoto, Y. Org. Lett. 2008, 10, 309
-
(2008)
Org. Lett.
, vol.10
, pp. 309
-
-
Nakamura, I.1
Chan, C.W.2
Araki, T.3
Terada, M.4
Yamamoto, Y.5
-
11
-
-
27544457189
-
-
Nakamura, I.; Mizushima, Y.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 15022
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 15022
-
-
Nakamura, I.1
Mizushima, Y.2
Yamamoto, Y.3
-
12
-
-
4344572110
-
-
For migration of p -methoxybenzyl (PMB) and other groups, see selected examples
-
For migration of p -methoxybenzyl (PMB) and other groups, see selected examples: Shimada, T.; Nakamura, I.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 10546
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 10546
-
-
Shimada, T.1
Nakamura, I.2
Yamamoto, Y.3
-
13
-
-
33746309818
-
-
Nakamura, I.; Sato, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2006, 45, 4473
-
(2006)
Angew. Chem., Int. Ed.
, vol.45
, pp. 4473
-
-
Nakamura, I.1
Sato, T.2
Yamamoto, Y.3
-
14
-
-
34447503462
-
-
Nakamura, I.; Mizushima, Y.; Yamagishi, U.; Yamamoto, Y. Tetrahedron 2007, 63, 8670
-
(2007)
Tetrahedron
, vol.63
, pp. 8670
-
-
Nakamura, I.1
Mizushima, Y.2
Yamagishi, U.3
Yamamoto, Y.4
-
15
-
-
34347212144
-
-
Fürstner, A.; Heilmann, E.; Davies, P. W. J. Am. Chem. Soc. 2007, 46, 4760
-
(2007)
J. Am. Chem. Soc.
, vol.46
, pp. 4760
-
-
Fürstner, A.1
Heilmann, E.2
Davies, P.W.3
-
16
-
-
34249686688
-
-
2-catalyzed cycloisomerization of 2-propargyl anilines gave indole products through a typical 1,2-addition pathway, with no epoxide product 6 in this case. See
-
2-catalyzed cycloisomerization of 2-propargyl anilines gave indole products through a typical 1,2-addition pathway, with no epoxide product 6 in this case. See: Cariou, K.; Ronan, B.; Mignani, S.; Fensterbank, L.; Malacria, M. Angew. Chem., Int. Ed. 2007, 46, 1881
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 1881
-
-
Cariou, K.1
Ronan, B.2
Mignani, S.3
Fensterbank, L.4
Malacria, M.5
-
18
-
-
34347230892
-
-
Chang, H.-K.; Datta, S.; Das, A.; Liu, R.-S. Angew. Chem., Int. Ed. 2007, 46, 4744
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 4744
-
-
Chang, H.-K.1
Datta, S.2
Das, A.3
Liu, R.-S.4
-
19
-
-
79953185642
-
-
2 (25 °C, 10 min).
-
2 (25 °C, 10 min).
-
-
-
-
20
-
-
77953876449
-
-
For the gem -dialkyl effect of this cyclization, see selected examples
-
For the gem -dialkyl effect of this cyclization, see selected examples: Kostal, J.; Jorgensen, W. L. J. Am. Chem. Soc. 2010, 32, 8766
-
(2010)
J. Am. Chem. Soc.
, vol.32
, pp. 8766
-
-
Kostal, J.1
Jorgensen, W.L.2
-
21
-
-
0001567673
-
-
Jager, J.; Graafland, T.; Schenk, H.; Kirby, A. J.; Engberts, J. B. F. N. J. Am. Chem. Soc. 1984, 106, 139
-
(1984)
J. Am. Chem. Soc.
, vol.106
, pp. 139
-
-
Jager, J.1
Graafland, T.2
Schenk, H.3
Kirby, A.J.4
Engberts, J.B.F.N.5
-
22
-
-
33748939157
-
-
Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. J. Chem. Soc. 1915, 107, 1080
-
(1915)
J. Chem. Soc.
, vol.107
, pp. 1080
-
-
Beesley, R.M.1
Ingold, C.K.2
Thorpe, J.F.3
-
23
-
-
79953220024
-
-
X-ray crystallographic data of compound 6o′′ is provided in the Supporting Information.
-
X-ray crystallographic data of compound 6o′′ is provided in the Supporting Information.
-
-
-
-
24
-
-
79953217597
-
-
A [3.3]-allyl shift was mentioned in the cycloisomerization of 2-propargyl anilines, but in a distinct mechanism. See ref 4.
-
A [3.3]-allyl shift was mentioned in the cycloisomerization of 2-propargyl anilines, but in a distinct mechanism. See ref 4.
-
-
-
-
25
-
-
79953194702
-
-
The detailed procedure for the preparation of enantiomerically enriched alcohol (R)- 5f is provided in the Supporting Information.
-
The detailed procedure for the preparation of enantiomerically enriched alcohol (R)- 5f is provided in the Supporting Information.
-
-
-
-
26
-
-
79953198505
-
-
For the cycloisomerization of compound 5, we exclude a prior 1,3-electrophilic migration as shown by the B → G transformation because we obtained no tractable amount of compound H or H′. Although species G might produce ketone 6a′ alternatively through a 1,2-hydride shift (Pinacol rearrangement), not ketone 6a′ but epoxide 6a is verified to be the primary product in this catalysis.
-
For the cycloisomerization of compound 5, we exclude a prior 1,3-electrophilic migration as shown by the B → G transformation because we obtained no tractable amount of compound H or H′. Although species G might produce ketone 6a′ alternatively through a 1,2-hydride shift (Pinacol rearrangement), not ketone 6a′ but epoxide 6a is verified to be the primary product in this catalysis.
-
-
-
|