-
1
-
-
79953137878
-
-
In mathematics, Riemann used a crumpled ball of paper with bookworms to explain the hidden dimensions in non-Euclidean geometry.
-
In mathematics, Riemann used a crumpled ball of paper with bookworms to explain the hidden dimensions in non-Euclidean geometry.
-
-
-
-
3
-
-
12044254008
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.73.2867
-
M. S. Spector, E. Naranjo, S. Chiruvolu, and J. A. Zasadzinski, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.73.2867 73, 2867 (1994);
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 2867
-
-
Spector, M.S.1
Naranjo, E.2
Chiruvolu, S.3
Zasadzinski, J.A.4
-
4
-
-
77954555669
-
-
0031-9007 10.1103/PhysRevLett.105.026103
-
T. Tallinen, A. Aström, P. Kekílíinen, and J. Timonen, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.105.026103 105, 026103 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 026103
-
-
Tallinen, T.1
Aström, A.2
Kekílíinen, P.3
Timonen, J.4
-
5
-
-
18444372337
-
Geometry of crumpled paper
-
DOI 10.1103/PhysRevLett.94.166107, 166107
-
D. L. Blair and A. Kudrolli, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.166107 94, 166107 (2005); (Pubitemid 40648271)
-
(2005)
Physical Review Letters
, vol.94
, Issue.16
, pp. 1-4
-
-
Blair, D.L.1
Kudrolli, A.2
-
6
-
-
33645681565
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.136103
-
E. Sultan and A. Boudaoud, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.136103 95, 136103 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.95
, pp. 136103
-
-
Sultan, E.1
Boudaoud, A.2
-
7
-
-
33845455714
-
Intrinsically anomalous roughness of randomly crumpled thin sheets
-
DOI 10.1103/PhysRevE.74.061602
-
A. S. Balankin, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.74.061602 74, 061602 (2006); (Pubitemid 44905757)
-
(2006)
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
, vol.74
, Issue.6
, pp. 061602
-
-
Balankin, A.S.1
Huerta, O.S.2
Cortes Montes De Oca, R.3
Ochoa, D.S.4
Martinez Trinidad, J.5
Mendoza, M.A.6
-
8
-
-
34548819393
-
Intrinsically anomalous self-similarity of randomly folded matter
-
DOI 10.1103/PhysRevE.76.032101
-
A. S. Balankin, R. C. Montes de Oca, and D. Samayoa, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.76.032101 76, 032101 (2007); (Pubitemid 47443140)
-
(2007)
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
, vol.76
, Issue.3
, pp. 032101
-
-
Balankin, A.S.1
De Oca, R.C.M.2
Ochoa, D.S.3
-
9
-
-
77953986990
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.81.061126
-
A. S. Balankin, D. Samayoa, I. A. Miguel, J. Patiño, and M. A. Martínez, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.81.061126 81, 061126 (2010).
-
(2010)
Phys. Rev. e
, vol.81
, pp. 061126
-
-
Balankin, A.S.1
Samayoa, D.2
Miguel, I.A.3
Patiño, J.4
Martínez, M.A.5
-
10
-
-
69949102960
-
-
0191-8141 10.1016/j.jsg.2008.10.006
-
Z. Ismat, J. Struct. Geolog. 0191-8141 10.1016/j.jsg.2008.10.006 31, 972 (2009).
-
(2009)
J. Struct. Geolog.
, vol.31
, pp. 972
-
-
Ismat, Z.1
-
11
-
-
34247580877
-
Stress focusing in elastic sheets
-
DOI 10.1103/RevModPhys.79.643
-
T. A. Witten, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.79.643 79, 643 (2007). (Pubitemid 46677004)
-
(2007)
Reviews of Modern Physics
, vol.79
, Issue.2
, pp. 643-675
-
-
Witten, T.A.1
-
12
-
-
4243721058
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.88.076101
-
K. Matan, R. B. Williams, T. A. Witten, and S. R. Nagel, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.88.076101 88, 076101 (2002);
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 076101
-
-
Matan, K.1
Williams, R.B.2
Witten, T.A.3
Nagel, S.R.4
-
13
-
-
73549113593
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.103.263902
-
Y.-C. Lin, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.103. 263902 103, 263902 (2009);
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 263902
-
-
Lin, Y.-C.1
-
14
-
-
51149115055
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.106101
-
T. Tallinen, J. A. Aström, and J. Timonen, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.106101 95, 106101 (2008);
-
(2008)
Phys. Rev. Lett.
, vol.95
, pp. 106101
-
-
Tallinen, T.1
Aström, J.A.2
Timonen, J.3
-
16
-
-
41549102900
-
-
PLRBAQ 1098-0121 10.1103/PhysRevB.77.125421
-
A. S. Balankin, Phys. Rev. B PLRBAQ 1098-0121 10.1103/PhysRevB.77.125421 77, 125421 (2008);
-
(2008)
Phys. Rev. B
, vol.77
, pp. 125421
-
-
Balankin, A.S.1
-
18
-
-
0024716564
-
-
M., JPAPBE 0022-3727 10.1088/0022-3727/22/8/030
-
M. A. F. Gomes, J. Phys. D: Appl. Phys. JPAPBE 0022-3727 10.1088/0022-3727/22/8/030 22, 1217 (1989);
-
(1989)
J. Phys. D: Appl. Phys.
, vol.22
, pp. 1217
-
-
Gomes, A.F.1
-
19
-
-
34547343626
-
Scaling properties of randomly folded plastic sheets
-
DOI 10.1103/PhysRevE.75.051117
-
A. S. Balankin, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.75.051117 75, 051117 (2007); (Pubitemid 47140192)
-
(2007)
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
, vol.75
, Issue.5
, pp. 051117
-
-
Balankin, A.S.1
Silva, I.C.2
Martinez, O.A.3
Huerta, O.S.4
-
20
-
-
52649084787
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.101.125504
-
Y. C. Lin, Y. L. Wang, Y. Liu, and T. M. Hong, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.101.125504 101, 125504 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 125504
-
-
Lin, Y.C.1
Wang, Y.L.2
Liu, Y.3
Hong, T.M.4
-
22
-
-
0141726593
-
Permeabilities of unsaturated fractal porous media
-
DOI 10.1016/S0301-9322(03)00140-X
-
B. Yu, J. Li, Z. Li, and M. Zou, Int. J. Multiphase Flow IJMFBP 0301-9322 10.1016/S0301-9322(03)00140-X 29, 1625 (2003); (Pubitemid 37216426)
-
(2003)
International Journal of Multiphase Flow
, vol.29
, Issue.10
, pp. 1625-1642
-
-
Yu, B.1
Li, J.2
Li., Z.3
Zou, M.4
-
23
-
-
20444371045
-
Evaluation of soil water retention curve with the pore-solid fractal model
-
DOI 10.1016/j.geoderma.2004.11.016, PII S001670610400299X
-
G. Huang and R. Zhang, Geoderma GEDMAB 0016-7061 10.1016/j.geoderma.2004. 11.016 127, 52 (2005); (Pubitemid 40793528)
-
(2005)
Geoderma
, vol.127
, Issue.1-2
, pp. 52-61
-
-
Huang, G.1
Zhang, R.2
-
24
-
-
27644583865
-
The relationship between fractal properties of solid matrix and pore space in porous media
-
DOI 10.1016/j.geoderma.2005.01.003, PII S0016706105000078
-
A. Dathea and M. Thullner, Geoderma 0016-7061 10.1016/j.geoderma.2005.01. 003 129, 279 (2005); (Pubitemid 41550349)
-
(2005)
Geoderma
, vol.129
, Issue.3-4
, pp. 279-290
-
-
Dathe, A.1
Thullner, M.2
-
25
-
-
58149489004
-
-
JCOHE6 0169-7722 10.1016/j.jconhyd.2008.10.002
-
J. M. Köhne, S. Köhne, and J. Å imÅnek, J. Contam. Hydrol. JCOHE6 0169-7722 10.1016/j.jconhyd.2008.10.002 104, 4 (2009);
-
(2009)
J. Contam. Hydrol.
, vol.104
, pp. 4
-
-
Köhne, J.M.1
Köhne, S.2
ÅimÅnek, J.3
-
26
-
-
78649961672
-
-
0920-4105 10.1016/j.petrol.2010.05.002
-
K. Li, J. Petroleum Sci. Eng. 0920-4105 10.1016/j.petrol.2010.05.002 73, 20 (2010).
-
(2010)
J. Petroleum Sci. Eng.
, vol.73
, pp. 20
-
-
Li, K.1
-
28
-
-
84926231222
-
-
0031-9007 10.1103/PhysRevLett.96.056101
-
A. S. Balankin, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.96.056101 96, 056101 (2006);
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 056101
-
-
Balankin, A.S.1
-
29
-
-
38549138326
-
Transport properties of saturated and unsaturated porous fractal materials
-
DOI 10.1103/PhysRevLett.100.035504
-
S.W. Coleman and J. C. Vassilicos, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.100.035504 100, 035504 (2008). (Pubitemid 351161797)
-
(2008)
Physical Review Letters
, vol.100
, Issue.3
, pp. 035504
-
-
Coleman, S.W.1
Vassilicos, J.C.2
-
30
-
-
40849114647
-
Capillary pressure in a porous medium with distinct pore surface and pore volume fractal dimensions
-
DOI 10.1103/PhysRevE.77.021203
-
M. R. Deinert, A. Dathe, J.-Y. Parlange, and K. B. Cady, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.77.021203 77, 021203 (2008); (Pubitemid 351393444)
-
(2008)
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
, vol.77
, Issue.2
, pp. 021203
-
-
Deinert, M.R.1
Dathe, A.2
Parlange, J.-Y.3
Cady, K.B.4
-
31
-
-
61949090642
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.79.021202
-
M. R. Deinert and J.-Y. Parlange, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.79.021202 79, 021202 (2009).
-
(2009)
Phys. Rev. e
, vol.79
, pp. 021202
-
-
Deinert, M.R.1
Parlange, J.-Y.2
-
32
-
-
79953133361
-
-
The porosity of tested balls was varied in the range 0.802
-
The porosity of tested balls was varied in the range 0. 802 < p (Î) < 0. 987.
-
-
-
-
33
-
-
79953149344
-
-
In this way, we were able to fill with water up to 97% of pore space of a folded ball.
-
In this way, we were able to fill with water up to 97 % of pore space of a folded ball.
-
-
-
-
34
-
-
0037186452
-
Is hydrology kinematic?
-
DOI 10.1002/hyp.306
-
V. P. Singh, Hydrol. Process 0885-6087 10.1002/hyp.306 16, 667 (2002). (Pubitemid 34166197)
-
(2002)
Hydrological Processes
, vol.16
, Issue.3
, pp. 667-716
-
-
Singh, V.P.1
-
35
-
-
79953148986
-
-
α=0.073
-
α = 0. 073
-
-
-
-
36
-
-
79953152889
-
-
P, where the parameter É are varied from experiment to experiment in the range 0.003â©Éâ©0. 004.
-
P, where the parameter É are varied from experiment to experiment in the range 0. 003 â© É â© 0. 004.
-
-
-
-
37
-
-
79953143114
-
-
Notice that the same amount of water escapes from a hollow reservoir with holes more than ten times faster than from a folded sheet with the same cross-sectional area available for water escape.
-
Notice that the same amount of water escapes from a hollow reservoir with holes more than ten times faster than from a folded sheet with the same cross-sectional area available for water escape.
-
-
-
-
38
-
-
79953139649
-
-
Strictly speaking, the best fit of all experimental data is KÂ=0.13ÏVP1.2 [see the top insert in Fig. 5(a)], whereas the data for balls with different contraction ratios are best fitted by Eq. (3) [see the bottom insert in Fig. 5(a)].
-
Strictly speaking, the best fit of all experimental data is K Â = 0. 13 Ï V P 1. 2 [see the top insert in Fig. 5(a)], whereas the data for balls with different contraction ratios are best fitted by Eq. (3) [see the bottom insert in Fig. 5(a)].
-
-
-
-
40
-
-
79953138928
-
-
This is possible, for example, if the height of water in a folded sheet does not decrease so far M>MrBF, or if both Î"P and Î"l decrease as M decreases, in such a way that Î"P/Î"l= const. Alternatively, we can assume that Î"P/ Î"lâ‰Ïg, but this seems less probable. In any case, this point needs to be clarified in further studies.
-
This is possible, for example, if the height of water in a folded sheet does not decrease so far M > M r BF, or if both Î" P and Î" l decrease as M decreases, in such a way that Î" P / Î" l = const. Alternatively, we can assume that Î" P / Î" l â‰ Ï g, but this seems less probable. In any case, this point needs to be clarified in further studies.
-
-
-
-
41
-
-
0003451857
-
-
in Colorado State University, Fort Collins, CO
-
R. H. Brooks and A. T. Corey, in Hydrology Papers, No. 3 (Colorado State University, Fort Collins, CO, 1964), p. 22.
-
(1964)
Hydrology Papers, No. 3
, pp. 22
-
-
Brooks, R.H.1
Corey, A.T.2
-
42
-
-
0034095593
-
A concise parameterization of the hydraulic conductivity of unsaturated soils
-
DOI 10.1016/S0309-1708(00)00019-1, PII S0309170800000191
-
W. Brutsaert, Adv. Water Res. 0309-1708 10.1016/S0309-1708(00)00019-1 23, 811 (2000). (Pubitemid 30398112)
-
(2000)
Advances in Water Resources
, vol.23
, Issue.8
, pp. 811-815
-
-
Brutsaert, W.1
-
43
-
-
1842711873
-
Continuum percolation theory for pressure-saturation characteristics of fractal soils: Extension to non-equilibrium
-
DOI 10.1016/j.advwatres.2004.01.002, PII S0309170804000119
-
A. G. Hunt, Adv. Water Res. 0309-1708 10.1016/j.advwatres.2004.01.002 27, 245 (2004). (Pubitemid 38473860)
-
(2004)
Advances in Water Resources
, vol.27
, Issue.3
, pp. 245-257
-
-
Hunt, A.G.1
-
44
-
-
68949172369
-
-
JCISA5 0021-9797 10.1016/j.jcis.2009.06.036
-
N. Fries and M. Dreyer, J. Colloid Interface Sci. JCISA5 0021-9797 10.1016/j.jcis.2009.06.036 338, 514 (2009).
-
(2009)
J. Colloid Interface Sci.
, vol.338
, pp. 514
-
-
Fries, N.1
Dreyer, M.2
-
45
-
-
79953147393
-
-
Of course, this statement needs to be verified by direct experiments.
-
Of course, this statement needs to be verified by direct experiments.
-
-
-
-
46
-
-
73649135765
-
-
Experimentally it was found that the mass fractal dimension of folded matter increases as Î increases [see, PLEEE8 1539-3755 10.1103/PhysRevE.80.066114
-
Experimentally it was found that the mass fractal dimension of folded matter increases as Î increases [see Y.-C. Lin, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.80.066114 80, 066114, (2009)].
-
(2009)
Phys. Rev. e
, vol.80
, pp. 066114
-
-
Lin, Y.-C.1
-
47
-
-
79953151823
-
-
P(p=0)≡0.
-
P (p = 0) ≡ 0.
-
-
-
-
48
-
-
0011836746
-
-
S [see, JCPSA6 0021-9606 10.1063/1.446210
-
S [see P. Pfeifer and D. Avnir, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.446210 79, 3558, (1983) and references therein].
-
(1983)
J. Chem. Phys.
, vol.79
, pp. 3558
-
-
Pfeifer, P.1
Avnir, D.2
-
49
-
-
79953159725
-
-
S. If so, our finding n=α=3 together with (7), (8) suggest that ω=1, while ζ=1- χ.
-
S. If so, our finding n = α = 3 together with (7), (8) suggest that ω = 1, while ζ = 1 - χ.
-
-
-
|