메뉴 건너뛰기




Volumn 78, Issue 3, 2010, Pages 343-379

On the quest for optimal rule learning heuristics

Author keywords

Heuristics; Inductive rule learning; Metalearning

Indexed keywords

ECONOMIC AND SOCIAL EFFECTS; HEURISTIC ALGORITHMS;

EID: 78650715148     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-009-5162-2     Document Type: Article
Times cited : (65)

References (46)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model selection
    • Akaike, H. (1974). A new look at the statistical model selection. IEEE Transactions on Automatic Control, 19(6), 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 5
    • 0002117591 scopus 로고
    • A further comparison of splitting rules for decision-tree induction
    • Buntine,W., & Niblett, T. (1992). A further comparison of splitting rules for decision-tree induction. Machine Learning, 8, 75-85.
    • (1992) Machine Learning , vol.8 , pp. 75-85
    • Buntine, W.1    Niblett, T.2
  • 6
    • 84897572767 scopus 로고    scopus 로고
    • Meta-lernen einer evaluierungs-funktion für einen regel-lerner
    • Master?s thesis, TU Darmstadt, December 2006 (in German)
    • Burges, S. (2006). Meta-Lernen einer Evaluierungs-Funktion für einen Regel-Lerner. Master?s thesis, TU Darmstadt, December 2006 (in German) (English title: Meta-learning of an evaluation function for a rule learner).
    • (2006) English Title: Meta-learning of An Evaluation Function for A Rule Learner
    • Burges, S.1
  • 7
    • 0003006556 scopus 로고
    • Estimating probabilities: A crucial task in machine learning
    • In L. Aiello (Ed.), ECAI-90, Stockholm, Sweden, 1990. London: Pitman
    • Cestnik, B. (1990). Estimating probabilities: a crucial task in machine learning. In L. Aiello (Ed.), Proceedings of the 9th European conference on artificial intelligence (pp. 147-150). ECAI-90, Stockholm, Sweden, 1990. London: Pitman.
    • (1990) Proceedings of the 9th European Conference on Artificial Intelligence , pp. 147-150
    • Cestnik, B.1
  • 8
    • 85015191605 scopus 로고
    • Rule induction with CN2: Some recent improvements
    • EWSL-91, Porto, Portugal, 1991. Berlin: Springer
    • Clark, P., & Boswell, R. (1991). Rule induction with CN2: Some recent improvements. In Proceedings of the 5th European working session on learning (pp. 151-163). EWSL-91, Porto, Portugal, 1991. Berlin: Springer.
    • (1991) Proceedings of the 5th European Working Session on Learning , pp. 151-163
    • Clark, P.1    Boswell, R.2
  • 9
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3(4), 261-283.
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 10
    • 85149612939 scopus 로고
    • Fast effective rule induction
    • In A. Prieditis & S. Russell (Eds.), Tahoe City, CA, July 9-12, 1995. San Mateo: Morgan Kaufmann
    • Cohen, W. W. (1995). Fast effective rule induction. In A. Prieditis & S. Russell (Eds.), Proceedings of the 12th international conference on machine learning (pp. 115-123). Tahoe City, CA, July 9-12, 1995. San Mateo: Morgan Kaufmann.
    • (1995) Proceedings of the 12th International Conference on Machine Learning , pp. 115-123
    • Cohen, W.W.1
  • 11
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar, J. (2006). Statistical comparisons of classifiers over multiple datasets. Journal of Machine Learning Research, 7, 1-30. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 12
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • Fan, R.-E., Chen, P.-H., Lin, C.-J., & Joachims, T. (2005). Working set selection using the second order information for training SVM. Journal of Machine Learning Research, 6, 1889-1918. (Pubitemid 41798130)
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 13
    • 0002129041 scopus 로고    scopus 로고
    • Generating accurate rule sets without global optimization
    • In J. Shavlik (Ed.), ICML-98, Madison, WI, 1998. San Mateo: Morgan Kaufmann
    • Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization. In J. Shavlik (Ed.), Proceedings of the 15th international conference on machine learning (pp. 144-151). ICML-98, Madison, WI, 1998. San Mateo: Morgan Kaufmann.
    • (1998) Proceedings of the 15th International Conference on Machine Learning , pp. 144-151
    • Frank, E.1    Witten, I.H.2
  • 14
    • 0033075882 scopus 로고    scopus 로고
    • Separate-and-conquer rule learning
    • Fürnkranz, J. (1999). Separate-and-conquer rule learning. Artificial Intelligence Review, 13(1), 3-54.
    • (1999) Artificial Intelligence Review , vol.13 , Issue.1 , pp. 3-54
    • Fürnkranz, J.1
  • 17
    • 0031139832 scopus 로고    scopus 로고
    • Pruning algorithms for rule learning
    • Fürnkranz, J. (1997). Pruning algorithms for rule learning. Machine Learning, 27(2), 139-171.
    • (1997) Machine Learning , vol.27 , Issue.2 , pp. 139-171
    • Fürnkranz, J.1
  • 18
    • 14844350497 scopus 로고    scopus 로고
    • An analysis of stopping and filtering criteria for rule learning
    • Machine Learning: ECML 2004 - 15th European Conference on Machine Learning
    • Fürnkranz, J., & Flach, P. (2004). An analysis of stopping and filtering criteria for rule learning. In J.-F. Boulicaut, F. Esposito, F. Giannotti, & D. Pedreschi (Eds.), Lecture notes in artificial intelligence: Vol. 3201. Proceedings of the 15th European conference on machine learning (pp. 123-133). ECML-04, Pisa, Italy, 2004. Berlin: Springer. (Pubitemid 41050086)
    • (2004) Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) , vol.3201 , pp. 123-133
    • Furnkranz, J.1    Flach, P.2
  • 19
    • 14844361816 scopus 로고    scopus 로고
    • ROC n' rule learning - Towards a better understanding of covering algorithms
    • DOI 10.1007/s10994-005-5011-x
    • Fürnkranz, J., & Flach, P. A. (2005). ROC ?n? rule learning-towards a better understanding of covering algorithms. Machine Learning, 58(1), 39-77. (Pubitemid 40356739)
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 39-77
    • Furnkranz, J.1    Flach, P.A.2
  • 20
    • 85152557036 scopus 로고
    • Incremental reduced error pruning
    • In W. Cohen & H. Hirsh (Eds.), ML-94, New Brunswick, NJ, 1994. San Mateo: Morgan Kaufmann
    • Fürnkranz, J., & Widmer, G. (1994). Incremental reduced error pruning. In W. Cohen & H. Hirsh (Eds.), Proceedings of the 11th international conference on machine learning (pp. 70-77). ML-94, New Brunswick, NJ, 1994. San Mateo: Morgan Kaufmann.
    • (1994) Proceedings of the 11th International Conference on Machine Learning , pp. 70-77
    • Fürnkranz, J.1    Widmer, G.2
  • 23
    • 56749163687 scopus 로고    scopus 로고
    • An empirical investigation of the trade-off between consistency and coverage in rule learning heuristics
    • T. Horvath, J.-F. Boulicaut, & M. Berthold (Eds.), DS-08, Budapest, Hungary, 2008. Berlin: Springer
    • Janssen, F., & Fürnkranz, J. (2008). An empirical investigation of the trade-off between consistency and coverage in rule learning heuristics. In T. Horvath, J.-F. Boulicaut, & M. Berthold (Eds.), Proceedings of the 11th international conference on discovery science (pp. 40-51). DS-08, Budapest, Hungary, 2008. Berlin: Springer.
    • (2008) Proceedings of the 11th International Conference on Discovery Science , pp. 40-51
    • Janssen, F.1    Fürnkranz, J.2
  • 24
    • 72849145204 scopus 로고    scopus 로고
    • Are-evaluation of the over-searching phenomenon in inductive rule learning
    • SDM-09, Sparks, NV, 2009
    • Janssen, F., & Fürnkranz, J. (2009). A re-evaluation of the over-searching phenomenon in inductive rule learning. In Proceedings of the SIAM international conference on data mining (pp. 329-340). SDM-09, Sparks, NV, 2009.
    • (2009) Proceedings of the SIAM International Conference on Data Mining , pp. 329-340
    • Janssen, F.1    Fürnkranz, J.2
  • 25
    • 0026914112 scopus 로고
    • Problems for knowledge discovery in databases and their treatment in the statistics interpreter explora
    • Klösgen, W. (1992). Problems for knowledge discovery in databases and their treatment in the statistics interpreter explora. International Journal of Intelligent Systems, 7, 649-673.
    • (1992) International Journal of Intelligent Systems , vol.7 , pp. 649-673
    • Klösgen, W.1
  • 29
    • 14844359017 scopus 로고
    • Use of heuristics in empirical inductive logic programming
    • in S. H. Muggleton & K. Furukawa (Eds.), Number TM-1182 in ICOT Technical Memorandum, Tokyo, Japan, 1992. Institute for New Generation Computer Technology
    • Lavrač, N., Cestnik, B., & Džeroski, S. (1992b). Use of heuristics in empirical inductive logic programming. In S. H. Muggleton & K. Furukawa (Eds.), Proceedings of the 2nd international workshop on inductive logic programming (ILP-92), Number TM-1182 in ICOT Technical Memorandum, Tokyo, Japan, 1992. Institute for New Generation Computer Technology.
    • (1992) Proceedings of the 2nd International Workshop on Inductive Logic Programming (ILP-92)
    • Lavrač, N.1    Cestnik, B.2    Džeroski, S.3
  • 30
    • 0003312474 scopus 로고
    • On the quasi-minimal solution of the covering problem
    • Switching Circuits, FCIP-69, Bled, Yugoslavia, 1969
    • Michalski, R. S. (1969). On the quasi-minimal solution of the covering problem. In Proceedings of the 5th international symposium on information processing (pp. 125-128). Switching Circuits, Vol. A3, FCIP-69, Bled, Yugoslavia, 1969.
    • (1969) Proceedings of the 5th International Symposium on Information Processing , vol.3 A , pp. 125-128
    • Michalski, R.S.1
  • 31
    • 34249966833 scopus 로고
    • An empirical comparison of selection measures for decision-tree induction
    • Mingers, J. (1989). An empirical comparison of selection measures for decision-tree induction. Machine Learning, 3, 319-342.
    • (1989) Machine Learning , vol.3 , pp. 319-342
    • Mingers, J.1
  • 33
    • 77951503082 scopus 로고
    • Inverse entailment and Progol
    • Special issue on inductive logic programming
    • Muggleton, S. H. (1995). Inverse entailment and Progol. New Generation Computing, 13(3, 4), 245-286. Special issue on inductive logic programming.
    • (1995) New Generation Computing , vol.13 , Issue.3-4 , pp. 245-286
    • Muggleton, S.H.1
  • 34
    • 0000786695 scopus 로고    scopus 로고
    • Learning first-order definitions of functions
    • Quinlan, J. (1996). Learning first-order definitions of functions. Journal of Artificial Intelligence Research, 5, 139-161. (Pubitemid 126646167)
    • (1996) Journal of Artificial Intelligence Research , vol.5 , pp. 139-161
    • Quinlan, J.R.1
  • 35
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239-266.
    • (1990) Machine Learning , vol.5 , pp. 239-266
    • Quinlan, J.R.1
  • 36
    • 0001857179 scopus 로고
    • Learning efficient classification procedures and their application to chess end games
    • In R. S. Michalski, J. G. Carbonell, & T.M.Mitchell (Eds.), Palo Alto: Tioga
    • Quinlan, J. R. (1983). Learning efficient classification procedures and their application to chess end games. In R. S. Michalski, J. G. Carbonell, & T.M.Mitchell (Eds.), Machine learning. An artificial intelligence approach (pp. 463-482). Palo Alto: Tioga.
    • (1983) Machine Learning. An Artificial Intelligence Approach , pp. 463-482
    • Quinlan, J.R.1
  • 38
    • 33749539847 scopus 로고    scopus 로고
    • Finding association rules that trade support optimally against confidence
    • Scheffer, T. (2005). Finding association rules that trade support optimally against confidence. Intelligent Data Analysis, 9(3), 381-395.
    • (2005) Intelligent Data Analysis , vol.9 , Issue.3 , pp. 381-395
    • Scheffer, T.1
  • 40
    • 84897570517 scopus 로고    scopus 로고
    • Separate and conquer framework und disjunktive regeln
    • Master?s thesis, TU Darmstadt, 2005, In German
    • Thiel, M. (2005). Separate and Conquer Framework und disjunktive Regeln. Master?s thesis, TU Darmstadt, 2005. In German (English title: Separate and conquer framework and disjunctive rules).
    • (2005) English Title: Separate and Conquer Framework and Disjunctive Rules
    • Thiel, M.1
  • 42
    • 0001205879 scopus 로고
    • Measuring the VC-dimension of a learning machine
    • Vapnik, V., Levin, E., & Cun, Y. L. (1994). Measuring the VC-dimension of a learning machine. Neural Computation, 6(5), 851-876.
    • (1994) Neural Computation , vol.6 , Issue.5 , pp. 851-876
    • Vapnik, V.1    Levin, E.2    Cun, Y.L.3
  • 44
    • 34548792706 scopus 로고    scopus 로고
    • An algorithm for multi-relational discovery of subgroups
    • Principles of Data Mining and Knowledge Discovery
    • Wrobel, S. (1997). An algorithm for multi-relational discovery of subgroups. In J. Komorowski & J. Zytkow (Eds.), Proc. first European symposium on principles of data mining and knowledge discovery (pp. 78-87). PKDD-97, Berlin, 1997. Berlin: Springer. (Pubitemid 127097494)
    • (1997) Lecture Notes In Computer Science , Issue.1263 , pp. 78-87
    • Wrobel, S.1
  • 46
    • 12244275963 scopus 로고    scopus 로고
    • Exploiting a support-based upper bound of Pearson's correlation coefficient for efficiently identifying strongly correlated pairs
    • KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • Xiong, H., Shekhar, S., Tan, P.-N., & Kumar, V. (2004). Exploiting a support-based upper bound of Pearson?s correlation coefficient for efficiently identifying strongly correlated pairs. In Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 334-343). KDD-04, Seattle, USA, 2004. (Pubitemid 40114943)
    • (2004) KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 334-343
    • Xiong, H.1    Shekhar, S.2    Tan, P.-N.3    Kumar, V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.