메뉴 건너뛰기




Volumn 7, Issue 1, 2010, Pages 9-15

Novel perfusion culture with 3-dimensional shape-controlled scaffolds for bone tissue engineering

Author keywords

Intra morphology controllable scaffolds; Mesenchymal stem cell; Mg 63; Perfusion culture; Rapid prototyping

Indexed keywords

BONE TISSUE ENGINEERING; EXTRACELLULAR MATRICES; HUMAN OSTEOBLAST-LIKE CELLS; MESENCHYMAL STEM CELL; MG-63; NEW ZEALAND WHITE RABBIT; PERFUSION BIOREACTOR SYSTEMS; PERFUSION CULTURES;

EID: 79952644242     PISSN: 17382696     EISSN: 22125469     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (3)

References (25)
  • 1
    • 0034672872 scopus 로고    scopus 로고
    • Scaffolds in tissue engineering bone and cartilage
    • DW Hutmacher. Scaffolds in tissue engineering bone and cartilage: Biomaterials, 21, 2529 (2000).
    • (2000) Biomaterials , vol.21 , pp. 2529
    • Hutmacher, D.W.1
  • 2
    • 0036323143 scopus 로고    scopus 로고
    • Formation of threedimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor
    • VI Sikavitsas, GN Bancroft, AG Mikos. Formation of threedimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor: Journal of Biomedical Materials Research Part A, 62, 136 (2001).
    • (2001) Journal of Biomedical Materials Research Part a , vol.62 , pp. 136
    • Sikavitsas, V.I.1    Bancroft, G.N.2    Mikos, A.G.3
  • 3
    • 0033990783 scopus 로고    scopus 로고
    • Techniques for mechanical stimulation of cells in vitro: A review
    • TD Brown. Techniques for mechanical stimulation of cells in vitro: A review: Journal of Biomechanics, 33, 3 (2000).
    • (2000) Journal of Biomechanics , vol.33 , pp. 3
    • Brown, T.D.1
  • 4
    • 2442477849 scopus 로고    scopus 로고
    • Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-d partially demineralized bone scaffolds in vitro
    • JR Mauney, S Sjostorm, J Blumberg, et al., Mechanical Stimulation Promotes Osteogenic Differentiation of Human Bone Marrow Stromal Cells on 3-D Partially Demineralized Bone Scaffolds In Vitro: Calcif Tissue Int, 74, 458 (2004).
    • (2004) Calcif Tissue Int , vol.74 , pp. 458
    • Mauney, J.R.1    Sjostorm, S.2    Blumberg, J.3
  • 5
    • 0032212080 scopus 로고    scopus 로고
    • Differential effect of steady versus oscillating flow on bone cells
    • CR Jacobs, CE Yellowley, BR Davis, et al., Differential effect of steady versus oscillating flow on bone cells: Journal of Biomechanics, 31, 969 (1998).
    • (1998) Journal of Biomechanics , vol.31 , pp. 969
    • Jacobs, C.R.1    Yellowley, C.E.2    Davis, B.R.3
  • 6
    • 0032895922 scopus 로고    scopus 로고
    • Mechanotransduction in bonerole of the lacuno-canalicular network
    • EH Burger, J Klein-Nulend. Mechanotransduction in bonerole of the lacuno-canalicular network: FASEB Journal, 13, S101 (1999).
    • (1999) FASEB Journal , vol.13
    • Burger, E.H.1    Klein-Nulend, J.2
  • 7
    • 0028807366 scopus 로고
    • Mechanotransduction and the functional response of bone to mechanical strain
    • RL Duncan, CH Turner. Mechanotransduction and the functional response of bone to mechanical strain: Calcif Tissue Int, 57, 344 (1995).
    • (1995) Calcif Tissue Int , vol.57 , pp. 344
    • Duncan, R.L.1    Turner, C.H.2
  • 8
    • 0037937606 scopus 로고    scopus 로고
    • Design of a flow perfusion bioreactor system for bone tissue-engineering applications
    • GN Bancroft, VI Sikavitsas, AG Mikos. Design of a Flow Perfusion Bioreactor System for Bone Tissue-Engineering Applications: Tissue engineering, 9, 549 (2003).
    • (2003) Tissue Engineering , vol.9 , pp. 549
    • Bancroft, G.N.1    Sikavitsas, V.I.2    Mikos, A.G.3
  • 9
    • 41849128809 scopus 로고    scopus 로고
    • Flow perfusion culture of human mesenchymal stem cells on silicatesubstituted tricalcium phosphate scaffolds
    • L Bjerre, CE Bunger, M Kassem, et al., Flow perfusion culture of human mesenchymal stem cells on silicatesubstituted tricalcium phosphate scaffolds: Biomaterials, 29, 2616 (2008).
    • (2008) Biomaterials , vol.29 , pp. 2616
    • Bjerre, L.1    Bunger, C.E.2    Kassem, M.3
  • 10
    • 55549090760 scopus 로고    scopus 로고
    • Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte- constructs
    • RM Schulz, N Wustneck, CC van Donkelaar, et al., Development and Validation of a Novel Bioreactor System for Load- and Perfusion-Controlled Tissue Engineering of Chondrocyte- Constructs: Biotechnology and Bioengineering, 101, 714 (2008).
    • (2008) Biotechnology and Bioengineering , vol.101 , pp. 714
    • Schulz, R.M.1    Wustneck, N.2    Donkelaar, C.C.V.3
  • 11
    • 38749097368 scopus 로고    scopus 로고
    • Design and validation of a dynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds
    • MJ Jaasma, NA Plunkett, FJ O'Brien. Design and validation of a dynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds: Journal of Biotechnology, 133, 490 (2008).
    • (2008) Journal of Biotechnology , vol.133 , pp. 490
    • Jaasma, M.J.1    Plunkett, N.A.2    O'Brien, F.J.3
  • 12
    • 66249112862 scopus 로고    scopus 로고
    • A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors
    • C Jungreuthmayer, SW Donahue, MJ Jaasma, et al., A Comparative Study of Shear Stresses in Collagen- Glycosaminoglycan and Calcium Phosphate Scaffolds in Bone Tissue-Engineering Bioreactors: Tissue Engineering Part A, 15, 1141 (2009).
    • (2009) Tissue Engineering Part A , vol.15 , pp. 1141
    • Jungreuthmayer, C.1    Donahue, S.W.2    Jaasma, M.J.3
  • 13
    • 12344284982 scopus 로고    scopus 로고
    • 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor
    • B Porter, R Zauel, H Stockman, et al., 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor: Journal of Biomechanics, 38, 543 (2005).
    • (2005) Journal of Biomechanics , vol.38 , pp. 543
    • Porter, B.1    Zauel, R.2    Stockman, H.3
  • 14
    • 8144227180 scopus 로고    scopus 로고
    • Rapid prototyping in tissue engineering: Challenges and potential
    • WY Yeong, CK Chua, KF Leong. Rapid prototyping in tissue engineering: challenges and potential: TRENDS in Biotechnology, 22, 643 (2004).
    • (2004) TRENDS in Biotechnology , vol.22 , pp. 643
    • Yeong, W.Y.1    Chua, C.K.2    Leong, K.F.3
  • 15
    • 0035094757 scopus 로고    scopus 로고
    • Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling
    • DW Hutmacher, T Schantz, I Zein, et al., Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling: Journal of Biomedical Materials Research Part A, 55, 203 (2001).
    • (2001) Journal of Biomedical Materials Research Part A , vol.55 , pp. 203
    • Hutmacher, D.W.1    Schantz, T.2    Zein, I.3
  • 16
    • 58549094696 scopus 로고    scopus 로고
    • 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system
    • SA Park, GH Kim, YC Jeon, et al., 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system: J Mater Sci: Mater Med, 20, 229 (2009).
    • (2009) J Mater Sci: Mater Med , vol.20 , pp. 229
    • Park, S.A.1    Kim, G.H.2    Jeon, Y.C.3
  • 17
    • 66249089054 scopus 로고    scopus 로고
    • In vitro and animal study of novel nano-ha=pcl composite scaffolds fabricated by layer manufacturing process
    • SJ Heo, SE Kim, J Wei, et al., In Vitro and Animal Study of Novel Nano-HA=PCL Composite Scaffolds Fabricated by Layer Manufacturing Process: Tissue Engineering Part A, 15, 977 (2009).
    • (2009) Tissue Engineering Part A , vol.15 , pp. 977
    • Heo, S.J.1    Kim, S.E.2    Wei, J.3
  • 18
    • 33745567544 scopus 로고    scopus 로고
    • Human neutrophils reaction to the biodegraded nano-hydroxyapatite/ collagen and nanohydroxyapatite/collagen/poly(l-lactic acid) composites
    • S Liao, K Tamura, Y Zhu, et al., Human neutrophils reaction to the biodegraded nano-hydroxyapatite/collagen and nanohydroxyapatite/collagen/poly(L- lactic acid) composites: Journal of Biomedical Materials Research Part B: A pplied Biomaterials, 76, 820 (2006).
    • (2006) Journal of Biomedical Materials Research Part B: A pplied Biomaterials , vol.76 , pp. 820
    • Liao, S.1    Tamura, K.2    Zhu, Y.3
  • 19
    • 33644614363 scopus 로고    scopus 로고
    • Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol): Colloids and surfaces b
    • N Degirmenbasi, DM Kalyon, E Birinci. Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol): Colloids and Surfaces B: Biointerfaces, 48, 42 (2006).
    • (2006) Biointerfaces , vol.48 , pp. 42
    • Degirmenbasi, N.1    Kalyon, D.M.2    Birinci, E.3
  • 20
    • 33750690201 scopus 로고    scopus 로고
    • A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering
    • L Kong, Y Gao, G Lu, et al., A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering: European Polymer Journal, 42, 3171 (2006).
    • (2006) European Polymer Journal , vol.42 , pp. 3171
    • Kong, L.1    Gao, Y.2    Lu, G.3
  • 21
    • 0345015415 scopus 로고    scopus 로고
    • Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro
    • SH Cartmell, BD Porter, AJ Garcia, et al., Effects of Medium Perfusion Rate on Cell-Seeded Three-Dimensional Bone Constructs in Vitro: Tissue engineering, 9, 1197 (2004).
    • (2004) Tissue Engineering , vol.9 , pp. 1197
    • Cartmell, S.H.1    Porter, B.D.2    Garcia, A.J.3
  • 22
    • 27744502341 scopus 로고    scopus 로고
    • Perfusion culture enhances osteogenic differentiation of rat mesenchymal stem cells in collagen sponge reinforced with poly(glycolic acid) fiber
    • H Hosseinkhani, Y Inatsugu, Y Hiraoka, et al., Perfusion Culture Enhances Osteogenic Differentiation of Rat Mesenchymal Stem Cells in Collagen Sponge Reinforced with Poly(Glycolic Acid) Fiber: Tissue Engineering, 11, 1476 (2005).
    • (2005) Tissue Engineering , vol.11 , pp. 1476
    • Hosseinkhani, H.1    Inatsugu, Y.2    Hiraoka, Y.3
  • 23
    • 73349136774 scopus 로고    scopus 로고
    • Effects of flow shear stress 2and mass transporton the construction of a large-scale tissue- engineered bone in a perfusion bioreactor
    • D Li, T Tang, J Lu, et al., Effects of Flow Shear Stress 2and Mass Transporton the Construction of a Large-Scale Tissue- Engineered Bone in a Perfusion Bioreactor: Tissue Engineering Part A, 15, 2773 (2009).
    • (2009) Tissue Engineering Part A , vol.15 , pp. 2773
    • Li, D.1    Tang, T.2    Lu, J.3
  • 24
    • 2942588974 scopus 로고    scopus 로고
    • Bone tissue engineering using human mesenchymal stem cells: Effects of scaffold material and medium flow
    • L Meinel, V Karageorgiou, R Fajardo, et al., Bone Tissue Engineering Using Human Mesenchymal Stem Cells: Effects of Scaffold Material and Medium Flow: A nnals of Biomedical Engineering, 32, 112 (2004).
    • (2004) Annals of Biomedical Engineering , vol.32 , pp. 112
    • Meinel, L.1    Karageorgiou, V.2    Fajardo, R.3
  • 25
    • 37349087082 scopus 로고    scopus 로고
    • The growth of stem cells within β- tcp scaffolds in a fluid-dynamic environment
    • S Xu, D Li, Y Xie, et al., The growth of stem cells within β- TCP scaffolds in a fluid-dynamic environment: Materials Science and Engineering C, 28, 164 (2008).
    • (2008) Materials Science and Engineering C , vol.28 , pp. 164
    • Xu, S.1    Li, D.2    Xie, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.