메뉴 건너뛰기




Volumn 12, Issue 3, 2011, Pages 1616-1626

Stability and instability analysis for a ratio-dependent predatorprey system with diffusion effect

Author keywords

Diffusion driven; Hopf bifurcation; Instability; Periodic solution; Ratio dependent predatorprey system; Stability

Indexed keywords

DIFFUSION DRIVEN; DIFFUSION EFFECTS; DIFFUSION SYSTEMS; DIFFUSION-DRIVEN INSTABILITY; EQUILIBRIUM SOLUTIONS; FOLLOWING PROBLEM; HOPF BIFURCATION ANALYSIS; INSTABILITY; NEUMANN BOUNDARY CONDITION; NUMERICAL SIMULATION; PERIODIC SOLUTION; POSITIVE EQUILIBRIUM; PREDATOR - PREY SYSTEM; RATIO-DEPENDENT PREDATORPREY SYSTEM; STABILITY AND INSTABILITY; THEORETICAL RESULT;

EID: 79952625579     PISSN: 14681218     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.nonrwa.2010.10.016     Document Type: Article
Times cited : (25)

References (25)
  • 1
    • 34047275564 scopus 로고    scopus 로고
    • A ratio-dependent predatorprey model with diffusion
    • X. Zeng A ratio-dependent predatorprey model with diffusion Nonlinear Anal. RWA 8 2007 1062 1078
    • (2007) Nonlinear Anal. RWA , vol.8 , pp. 1062-1078
    • Zeng, X.1
  • 2
    • 40849117964 scopus 로고    scopus 로고
    • Stability and Hopf bifurcation for a predatorprey model with prey-stage structure and diffusion
    • M.X. Wang Stability and Hopf bifurcation for a predatorprey model with prey-stage structure and diffusion Math. Biosci. 212 2 2008 149 160
    • (2008) Math. Biosci. , vol.212 , Issue.2 , pp. 149-160
    • Wang, M.X.1
  • 3
    • 58749112528 scopus 로고    scopus 로고
    • Bifurcation and spatiotemporal patterns in a homogeneous diffusion predatorprey system
    • F. Yi, J. Wei, and J. Shi Bifurcation and spatiotemporal patterns in a homogeneous diffusion predatorprey system J. Differential Equations 246 2009 1944 1977
    • (2009) J. Differential Equations , vol.246 , pp. 1944-1977
    • Yi, F.1    Wei, J.2    Shi, J.3
  • 4
    • 38949167125 scopus 로고    scopus 로고
    • Diffusion-driven instability and bifurcation in the Lengyel-Epstein system
    • DOI 10.1016/j.nonrwa.2007.02.005, PII S1468121807000351
    • F. Yi, J. Wei, and J. Shi Diffusion-driven instability and bifurcation in the Lengyel-Epstein system Nonlinear Anal. RWA 9 2008 1038 1051 (Pubitemid 351221413)
    • (2008) Nonlinear Analysis: Real World Applications , vol.9 , Issue.3 , pp. 1038-1051
    • Yi, F.1    Wei, J.2    Shi, J.3
  • 5
    • 23044518055 scopus 로고    scopus 로고
    • Normal forms and Hopf bifurcationfor partial differential equations with delays
    • T. Faria Normal forms and Hopf bifurcationfor partial differential equations with delays Tran. Amer. Math. Soci. 352 2000 2217 2238
    • (2000) Tran. Amer. Math. Soci. , vol.352 , pp. 2217-2238
    • Faria, T.1
  • 6
    • 0035866130 scopus 로고    scopus 로고
    • Stability and Bifurcation for a Delayed Predator-Prey Model and the Effect of Diffusion
    • DOI 10.1006/jmaa.2000.7182, PII S0022247X00971828
    • T. Faria Stability and bifurcation for a delayed predatorprey model and the effects of diffusion J. Math. Anal. Appl. 254 2001 433 463 (Pubitemid 33380901)
    • (2001) Journal of Mathematical Analysis and Applications , vol.254 , Issue.2 , pp. 433-463
    • Faria, T.1
  • 7
    • 35349009580 scopus 로고    scopus 로고
    • Diffusion effect and Stability analysis of a predatorprey system described by a delayed reactiondiffusion equations
    • Z. Ge, and Y. He Diffusion effect and Stability analysis of a predatorprey system described by a delayed reactiondiffusion equations J. Math. Anal. Appl. 339 2008 1432 1450
    • (2008) J. Math. Anal. Appl. , vol.339 , pp. 1432-1450
    • Ge, Z.1    He, Y.2
  • 10
    • 64049107266 scopus 로고    scopus 로고
    • Hopf bifurcation analysis of a reactiondiffusion Sel'kov system
    • W. Han, and Z. Bao Hopf bifurcation analysis of a reactiondiffusion Sel'kov system J. Math. Anal. Appl. 356 2009 633 641
    • (2009) J. Math. Anal. Appl. , vol.356 , pp. 633-641
    • Han, W.1    Bao, Z.2
  • 12
    • 70449686957 scopus 로고    scopus 로고
    • Hopf bifurcation analysis for a delayed predatorprey system with diffusion effects
    • G. Hu, and W.T. Li Hopf bifurcation analysis for a delayed predatorprey system with diffusion effects Nonlinear Anal. RWA 11 2010 819 826
    • (2010) Nonlinear Anal. RWA , vol.11 , pp. 819-826
    • Hu, G.1    Li, W.T.2
  • 13
    • 42649116084 scopus 로고    scopus 로고
    • A qualitative study on general Gause-type predatorprey models with constant diffusion rates
    • W. Ko, and K. Ryu A qualitative study on general Gause-type predatorprey models with constant diffusion rates J. Math. Anal. Appl. 344 2008 217 230
    • (2008) J. Math. Anal. Appl. , vol.344 , pp. 217-230
    • Ko, W.1    Ryu, K.2
  • 14
    • 84972506384 scopus 로고
    • Global stability in diffusive delay LoktaVolterra systems
    • Y. Kuang, and H.L. Smith Global stability in diffusive delay LoktaVolterra systems Diff. Integral. Eqs. 4 1991 117 128
    • (1991) Diff. Integral. Eqs. , vol.4 , pp. 117-128
    • Kuang, Y.1    Smith, H.L.2
  • 15
    • 0001197579 scopus 로고
    • Convergence in LoktaVolterra type diffusive delay systems without dominating instantaneous negative feedbacks
    • Y. Kuang, and H.L. Smith Convergence in LoktaVolterra type diffusive delay systems without dominating instantaneous negative feedbacks J. Aust. Math. Soc. Ser. B 3 1991 17 29
    • (1991) J. Aust. Math. Soc. Ser. B , vol.3 , pp. 17-29
    • Kuang, Y.1    Smith, H.L.2
  • 16
    • 41849101678 scopus 로고    scopus 로고
    • Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions
    • W.T. Li, X.P. Yan, and C.H. Zhang Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions Chaos Solitons Fractals 38 2008 227 237
    • (2008) Chaos Solitons Fractals , vol.38 , pp. 227-237
    • Li, W.T.1    Yan, X.P.2    Zhang, C.H.3
  • 17
    • 34548687100 scopus 로고    scopus 로고
    • Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis
    • S. Ruan Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis Nat. Resour. Model. 11 1998 131 142
    • (1998) Nat. Resour. Model. , vol.11 , pp. 131-142
    • Ruan, S.1
  • 18
    • 67349248119 scopus 로고    scopus 로고
    • Hopf bifurcations in a reactiondiffusion population model with delay effect
    • Y. Su, J. Wei, and J. Shi Hopf bifurcations in a reactiondiffusion population model with delay effect J. Differential Equations 247 2009 1156 1184
    • (2009) J. Differential Equations , vol.247 , pp. 1156-1184
    • Su, Y.1    Wei, J.2    Shi, J.3
  • 19
    • 34250634518 scopus 로고    scopus 로고
    • Stability switch and Hopf bifurcation for a diffusion predatorprey system with delay
    • Y. Tang, and L. Zhou Stability switch and Hopf bifurcation for a diffusion predatorprey system with delay J. Math. Anal. Appl. 334 2007 1290 1307
    • (2007) J. Math. Anal. Appl. , vol.334 , pp. 1290-1307
    • Tang, Y.1    Zhou, L.2
  • 20
    • 65249161611 scopus 로고    scopus 로고
    • Bifurcation analysis in the diffusive LotkaVolterra system: An application to market economy
    • A.W. Wijeratne, F. Yi, and J. Wei Bifurcation analysis in the diffusive LotkaVolterra system: an application to market economy Chaos Solitons Fractals 40 2009 902 911
    • (2009) Chaos Solitons Fractals , vol.40 , pp. 902-911
    • Wijeratne, A.W.1    Yi, F.2    Wei, J.3
  • 22
    • 34548849467 scopus 로고    scopus 로고
    • Stability and Hopf bifurcation for a delayed predatorprey system with diffusion effects
    • X.P. Yan Stability and Hopf bifurcation for a delayed predatorprey system with diffusion effects Appl. Math. Comput. 192 2007 552 566
    • (2007) Appl. Math. Comput. , vol.192 , pp. 552-566
    • Yan, X.P.1
  • 23
    • 64049113001 scopus 로고    scopus 로고
    • Direction of Hopf bifurcation in a delayed LotkaVolterra competition diffusion system
    • X.P. Yan, and C.H. Zhang Direction of Hopf bifurcation in a delayed LotkaVolterra competition diffusion system Nonlinear Anal. RWA 10 2009 2758 2773
    • (2009) Nonlinear Anal. RWA , vol.10 , pp. 2758-2773
    • Yan, X.P.1    Zhang, C.H.2
  • 24
    • 84972506868 scopus 로고
    • The Hopf bifurcation and its stability forsemilinear diffusion equations with time delay arising in ecology
    • K. Yoshida The Hopf bifurcation and its stability forsemilinear diffusion equations with time delay arising in ecology Hiroshima Math. J. 12 1982 321 348
    • (1982) Hiroshima Math. J. , vol.12 , pp. 321-348
    • Yoshida, K.1
  • 25
    • 0036833143 scopus 로고    scopus 로고
    • Stability and Hopf bifurcation for a delay competition diffusion system
    • DOI 10.1016/S0960-0779(02)00068-1, PII S0960077902000681
    • L. Zhou, Y. Tang, and S. Hussein Stability and Hopf bifurcation for a delay competition diffusion system Chaos Solitons Fractals 14 2002 1201 1225 (Pubitemid 34863125)
    • (2002) Chaos, Solitons and Fractals , vol.14 , Issue.8 , pp. 1201-1225
    • Zhou, L.1    Tang, Y.2    Hussein, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.