-
1
-
-
34047275564
-
A ratio-dependent predatorprey model with diffusion
-
X. Zeng A ratio-dependent predatorprey model with diffusion Nonlinear Anal. RWA 8 2007 1062 1078
-
(2007)
Nonlinear Anal. RWA
, vol.8
, pp. 1062-1078
-
-
Zeng, X.1
-
2
-
-
40849117964
-
Stability and Hopf bifurcation for a predatorprey model with prey-stage structure and diffusion
-
M.X. Wang Stability and Hopf bifurcation for a predatorprey model with prey-stage structure and diffusion Math. Biosci. 212 2 2008 149 160
-
(2008)
Math. Biosci.
, vol.212
, Issue.2
, pp. 149-160
-
-
Wang, M.X.1
-
3
-
-
58749112528
-
Bifurcation and spatiotemporal patterns in a homogeneous diffusion predatorprey system
-
F. Yi, J. Wei, and J. Shi Bifurcation and spatiotemporal patterns in a homogeneous diffusion predatorprey system J. Differential Equations 246 2009 1944 1977
-
(2009)
J. Differential Equations
, vol.246
, pp. 1944-1977
-
-
Yi, F.1
Wei, J.2
Shi, J.3
-
4
-
-
38949167125
-
Diffusion-driven instability and bifurcation in the Lengyel-Epstein system
-
DOI 10.1016/j.nonrwa.2007.02.005, PII S1468121807000351
-
F. Yi, J. Wei, and J. Shi Diffusion-driven instability and bifurcation in the Lengyel-Epstein system Nonlinear Anal. RWA 9 2008 1038 1051 (Pubitemid 351221413)
-
(2008)
Nonlinear Analysis: Real World Applications
, vol.9
, Issue.3
, pp. 1038-1051
-
-
Yi, F.1
Wei, J.2
Shi, J.3
-
5
-
-
23044518055
-
Normal forms and Hopf bifurcationfor partial differential equations with delays
-
T. Faria Normal forms and Hopf bifurcationfor partial differential equations with delays Tran. Amer. Math. Soci. 352 2000 2217 2238
-
(2000)
Tran. Amer. Math. Soci.
, vol.352
, pp. 2217-2238
-
-
Faria, T.1
-
6
-
-
0035866130
-
Stability and Bifurcation for a Delayed Predator-Prey Model and the Effect of Diffusion
-
DOI 10.1006/jmaa.2000.7182, PII S0022247X00971828
-
T. Faria Stability and bifurcation for a delayed predatorprey model and the effects of diffusion J. Math. Anal. Appl. 254 2001 433 463 (Pubitemid 33380901)
-
(2001)
Journal of Mathematical Analysis and Applications
, vol.254
, Issue.2
, pp. 433-463
-
-
Faria, T.1
-
7
-
-
35349009580
-
Diffusion effect and Stability analysis of a predatorprey system described by a delayed reactiondiffusion equations
-
Z. Ge, and Y. He Diffusion effect and Stability analysis of a predatorprey system described by a delayed reactiondiffusion equations J. Math. Anal. Appl. 339 2008 1432 1450
-
(2008)
J. Math. Anal. Appl.
, vol.339
, pp. 1432-1450
-
-
Ge, Z.1
He, Y.2
-
10
-
-
64049107266
-
Hopf bifurcation analysis of a reactiondiffusion Sel'kov system
-
W. Han, and Z. Bao Hopf bifurcation analysis of a reactiondiffusion Sel'kov system J. Math. Anal. Appl. 356 2009 633 641
-
(2009)
J. Math. Anal. Appl.
, vol.356
, pp. 633-641
-
-
Han, W.1
Bao, Z.2
-
12
-
-
70449686957
-
Hopf bifurcation analysis for a delayed predatorprey system with diffusion effects
-
G. Hu, and W.T. Li Hopf bifurcation analysis for a delayed predatorprey system with diffusion effects Nonlinear Anal. RWA 11 2010 819 826
-
(2010)
Nonlinear Anal. RWA
, vol.11
, pp. 819-826
-
-
Hu, G.1
Li, W.T.2
-
13
-
-
42649116084
-
A qualitative study on general Gause-type predatorprey models with constant diffusion rates
-
W. Ko, and K. Ryu A qualitative study on general Gause-type predatorprey models with constant diffusion rates J. Math. Anal. Appl. 344 2008 217 230
-
(2008)
J. Math. Anal. Appl.
, vol.344
, pp. 217-230
-
-
Ko, W.1
Ryu, K.2
-
14
-
-
84972506384
-
Global stability in diffusive delay LoktaVolterra systems
-
Y. Kuang, and H.L. Smith Global stability in diffusive delay LoktaVolterra systems Diff. Integral. Eqs. 4 1991 117 128
-
(1991)
Diff. Integral. Eqs.
, vol.4
, pp. 117-128
-
-
Kuang, Y.1
Smith, H.L.2
-
15
-
-
0001197579
-
Convergence in LoktaVolterra type diffusive delay systems without dominating instantaneous negative feedbacks
-
Y. Kuang, and H.L. Smith Convergence in LoktaVolterra type diffusive delay systems without dominating instantaneous negative feedbacks J. Aust. Math. Soc. Ser. B 3 1991 17 29
-
(1991)
J. Aust. Math. Soc. Ser. B
, vol.3
, pp. 17-29
-
-
Kuang, Y.1
Smith, H.L.2
-
16
-
-
41849101678
-
Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions
-
W.T. Li, X.P. Yan, and C.H. Zhang Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions Chaos Solitons Fractals 38 2008 227 237
-
(2008)
Chaos Solitons Fractals
, vol.38
, pp. 227-237
-
-
Li, W.T.1
Yan, X.P.2
Zhang, C.H.3
-
17
-
-
34548687100
-
Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis
-
S. Ruan Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis Nat. Resour. Model. 11 1998 131 142
-
(1998)
Nat. Resour. Model.
, vol.11
, pp. 131-142
-
-
Ruan, S.1
-
18
-
-
67349248119
-
Hopf bifurcations in a reactiondiffusion population model with delay effect
-
Y. Su, J. Wei, and J. Shi Hopf bifurcations in a reactiondiffusion population model with delay effect J. Differential Equations 247 2009 1156 1184
-
(2009)
J. Differential Equations
, vol.247
, pp. 1156-1184
-
-
Su, Y.1
Wei, J.2
Shi, J.3
-
19
-
-
34250634518
-
Stability switch and Hopf bifurcation for a diffusion predatorprey system with delay
-
Y. Tang, and L. Zhou Stability switch and Hopf bifurcation for a diffusion predatorprey system with delay J. Math. Anal. Appl. 334 2007 1290 1307
-
(2007)
J. Math. Anal. Appl.
, vol.334
, pp. 1290-1307
-
-
Tang, Y.1
Zhou, L.2
-
20
-
-
65249161611
-
Bifurcation analysis in the diffusive LotkaVolterra system: An application to market economy
-
A.W. Wijeratne, F. Yi, and J. Wei Bifurcation analysis in the diffusive LotkaVolterra system: an application to market economy Chaos Solitons Fractals 40 2009 902 911
-
(2009)
Chaos Solitons Fractals
, vol.40
, pp. 902-911
-
-
Wijeratne, A.W.1
Yi, F.2
Wei, J.3
-
22
-
-
34548849467
-
Stability and Hopf bifurcation for a delayed predatorprey system with diffusion effects
-
X.P. Yan Stability and Hopf bifurcation for a delayed predatorprey system with diffusion effects Appl. Math. Comput. 192 2007 552 566
-
(2007)
Appl. Math. Comput.
, vol.192
, pp. 552-566
-
-
Yan, X.P.1
-
23
-
-
64049113001
-
Direction of Hopf bifurcation in a delayed LotkaVolterra competition diffusion system
-
X.P. Yan, and C.H. Zhang Direction of Hopf bifurcation in a delayed LotkaVolterra competition diffusion system Nonlinear Anal. RWA 10 2009 2758 2773
-
(2009)
Nonlinear Anal. RWA
, vol.10
, pp. 2758-2773
-
-
Yan, X.P.1
Zhang, C.H.2
-
24
-
-
84972506868
-
The Hopf bifurcation and its stability forsemilinear diffusion equations with time delay arising in ecology
-
K. Yoshida The Hopf bifurcation and its stability forsemilinear diffusion equations with time delay arising in ecology Hiroshima Math. J. 12 1982 321 348
-
(1982)
Hiroshima Math. J.
, vol.12
, pp. 321-348
-
-
Yoshida, K.1
-
25
-
-
0036833143
-
Stability and Hopf bifurcation for a delay competition diffusion system
-
DOI 10.1016/S0960-0779(02)00068-1, PII S0960077902000681
-
L. Zhou, Y. Tang, and S. Hussein Stability and Hopf bifurcation for a delay competition diffusion system Chaos Solitons Fractals 14 2002 1201 1225 (Pubitemid 34863125)
-
(2002)
Chaos, Solitons and Fractals
, vol.14
, Issue.8
, pp. 1201-1225
-
-
Zhou, L.1
Tang, Y.2
Hussein, S.3
|