-
1
-
-
84914830669
-
p bounds of solutions of reaction-diffusion equations
-
p bounds of solutions of reaction-diffusion equations. Comm. Partial Differential Equations 4 (1979) 827-868
-
(1979)
Comm. Partial Differential Equations
, vol.4
, pp. 827-868
-
-
Alikakos, N.1
-
2
-
-
0001339498
-
Global bifurcation of positive solutions in some systems of elliptic equations
-
Blat J., and Brown K.J. Global bifurcation of positive solutions in some systems of elliptic equations. SIAM J. Math. Anal. 17 6 (1986) 1339-1353
-
(1986)
SIAM J. Math. Anal.
, vol.17
, Issue.6
, pp. 1339-1353
-
-
Blat, J.1
Brown, K.J.2
-
4
-
-
84972537529
-
Existence and uniqueness of coexistence states for a predator-prey model with diffusion
-
Casal A., Eilbeck J.C., and López-Gómez J. Existence and uniqueness of coexistence states for a predator-prey model with diffusion. Differential Integral Equations 7 2 (1994) 411-439
-
(1994)
Differential Integral Equations
, vol.7
, Issue.2
, pp. 411-439
-
-
Casal, A.1
Eilbeck, J.C.2
López-Gómez, J.3
-
5
-
-
26844511430
-
Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion
-
Chen W., and Wang M. Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion. Math. Comput. Modelling 42 (2005) 31-44
-
(2005)
Math. Comput. Modelling
, vol.42
, pp. 31-44
-
-
Chen, W.1
Wang, M.2
-
6
-
-
0019830118
-
Some results on global stability of a predator-prey system
-
Cheng K.S., Hsu S.B., and Lin S.S. Some results on global stability of a predator-prey system. J. Math. Biol. 12 (1981) 115-126
-
(1981)
J. Math. Biol.
, vol.12
, pp. 115-126
-
-
Cheng, K.S.1
Hsu, S.B.2
Lin, S.S.3
-
7
-
-
0017676561
-
The Hopf bifurcation theorem in infinite dimensions
-
Crandall M.G., and Rabinowitz P.H. The Hopf bifurcation theorem in infinite dimensions. Arch. Ration. Mech. Anal. 67 1 (1977) 53-72
-
(1977)
Arch. Ration. Mech. Anal.
, vol.67
, Issue.1
, pp. 53-72
-
-
Crandall, M.G.1
Rabinowitz, P.H.2
-
8
-
-
21744459836
-
Some uniqueness and exact multiplicity results for a predator-prey model
-
Du Y., and Lou Y. Some uniqueness and exact multiplicity results for a predator-prey model. Trans. Amer. Math. Soc. 349 6 (1997) 2443-2475
-
(1997)
Trans. Amer. Math. Soc.
, vol.349
, Issue.6
, pp. 2443-2475
-
-
Du, Y.1
Lou, Y.2
-
9
-
-
0001674774
-
S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model
-
Du Y., and Lou Y. S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model. J. Differential Equations 144 2 (1998) 390-440
-
(1998)
J. Differential Equations
, vol.144
, Issue.2
, pp. 390-440
-
-
Du, Y.1
Lou, Y.2
-
10
-
-
23044527512
-
Qualitative behaviour of positive solutions of a predator-prey model: Effects of saturation
-
Du Y., and Lou Y. Qualitative behaviour of positive solutions of a predator-prey model: Effects of saturation. Proc. Roy. Soc. Edinburgh Sect. A 131 2 (2001) 321-349
-
(2001)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.131
, Issue.2
, pp. 321-349
-
-
Du, Y.1
Lou, Y.2
-
11
-
-
0017142168
-
Graphical stability, enrichment and pest control by a natural enemy
-
Freedman H.I. Graphical stability, enrichment and pest control by a natural enemy. Math. Biosci. 31 (1976) 207-225
-
(1976)
Math. Biosci.
, vol.31
, pp. 207-225
-
-
Freedman, H.I.1
-
14
-
-
35949030757
-
On the Volterra and other nonlinear models of interacting populations
-
Goel N.S., Maitra S.C., and Montroll E.W. On the Volterra and other nonlinear models of interacting populations. Rev. Mod. Phys. 43 (1971) 231-276
-
(1971)
Rev. Mod. Phys.
, vol.43
, pp. 231-276
-
-
Goel, N.S.1
Maitra, S.C.2
Montroll, E.W.3
-
15
-
-
0039978016
-
Geometric Theory of Semilinear Parabolic Equations
-
Springer-Verlag, Berlin
-
Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. vol. 840 (1993), Springer-Verlag, Berlin
-
(1993)
Lecture Notes in Math.
, vol.840
-
-
Henry, D.1
-
16
-
-
0002366911
-
The functional response of predators to prey density and its role in mimicry and population regulation
-
Holling C.S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Ent. Soc. Can. 46 (1995) 1-60
-
(1995)
Mem. Ent. Soc. Can.
, vol.46
, pp. 1-60
-
-
Holling, C.S.1
-
17
-
-
0024448915
-
Conditions for uniqueness of limit cycles in general predator-prey systems
-
Huang X.C., and Merrill S.J. Conditions for uniqueness of limit cycles in general predator-prey systems. Math. Biosci. 96 (1989) 47-60
-
(1989)
Math. Biosci.
, vol.96
, pp. 47-60
-
-
Huang, X.C.1
Merrill, S.J.2
-
18
-
-
33749640702
-
Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge
-
Ko W., and Ryu K. Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J. Differential Equations 231 (2006) 534-550
-
(2006)
J. Differential Equations
, vol.231
, pp. 534-550
-
-
Ko, W.1
Ryu, K.2
-
19
-
-
0002861760
-
Uniqueness of limit cycles in Gause-type models of predator-prey systems
-
Kuang Y., and Freedman H.I. Uniqueness of limit cycles in Gause-type models of predator-prey systems. Math. Biosci. 88 (1988) 67-84
-
(1988)
Math. Biosci.
, vol.88
, pp. 67-84
-
-
Kuang, Y.1
Freedman, H.I.2
-
20
-
-
0002542873
-
Large amplitude stationary solutions to a chemotaxis system
-
Lin C.S., Ni W.M., and Takagi I. Large amplitude stationary solutions to a chemotaxis system. J. Differential Equations 72 (1988) 1-27
-
(1988)
J. Differential Equations
, vol.72
, pp. 1-27
-
-
Lin, C.S.1
Ni, W.M.2
Takagi, I.3
-
21
-
-
29144440057
-
Geometric criteria for the nonexistence of cycles in Gause-type predator-prey systems
-
Liu Y. Geometric criteria for the nonexistence of cycles in Gause-type predator-prey systems. Proc. Amer. Math. Soc. 133 (2005) 3619-3626
-
(2005)
Proc. Amer. Math. Soc.
, vol.133
, pp. 3619-3626
-
-
Liu, Y.1
-
24
-
-
0000874061
-
Functional response and stability in predator-prey system
-
Oaten A., and Murdoch W.W. Functional response and stability in predator-prey system. Amer. Natur. 109 (1975) 289-298
-
(1975)
Amer. Natur.
, vol.109
, pp. 289-298
-
-
Oaten, A.1
Murdoch, W.W.2
-
25
-
-
1442279582
-
Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion
-
Pang Y.H., and Wang M. Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion. Proc. London. Math. Soc. 88 (2004) 135-157
-
(2004)
Proc. London. Math. Soc.
, vol.88
, pp. 135-157
-
-
Pang, Y.H.1
Wang, M.2
-
26
-
-
0141957171
-
Qualitative analysis of a ratio-dependent predator-prey system with diffusion
-
Pang Y.H., and Wang M. Qualitative analysis of a ratio-dependent predator-prey system with diffusion. Proc. Roy. Soc. Edinburgh Sect. A 131 (2003) 919-942
-
(2003)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.131
, pp. 919-942
-
-
Pang, Y.H.1
Wang, M.2
-
27
-
-
29944439751
-
On multiplicity and stability of positive solutions of a diffusive prey-predator model
-
Peng R., and Wang M. On multiplicity and stability of positive solutions of a diffusive prey-predator model. J. Math. Anal. Appl. 316 (2006) 256-268
-
(2006)
J. Math. Anal. Appl.
, vol.316
, pp. 256-268
-
-
Peng, R.1
Wang, M.2
-
28
-
-
0015243940
-
Paradox of enrichment: Destabilization of exploitation ecosystem in ecological time
-
Rosenzweig M.L. Paradox of enrichment: Destabilization of exploitation ecosystem in ecological time. Science 171 (1971) 385-387
-
(1971)
Science
, vol.171
, pp. 385-387
-
-
Rosenzweig, M.L.1
-
31
-
-
0032622256
-
Global asymptotic stability of a predator-prey system of Holling type
-
Sugie J., and Katayama M. Global asymptotic stability of a predator-prey system of Holling type. Nonlinear Anal. 38 (1999) 105-121
-
(1999)
Nonlinear Anal.
, vol.38
, pp. 105-121
-
-
Sugie, J.1
Katayama, M.2
|