메뉴 건너뛰기




Volumn , Issue , 2010, Pages 566-569

Data stream clustering: Challenges and issues

Author keywords

Clustering; Concept drift; Data stream; K means

Indexed keywords

CLUSTERING; CLUSTERING TECHNIQUES; CONCEPT DRIFTS; DATA BASE; DATA SETS; DATA STREAM; DATA STREAM CLUSTERING; DATA STREAM MINING; EFFICIENT ALGORITHM; EFFICIENT STRATEGY; HIDDEN INFORMATION; K-MEANS; MAIN GROUP; MINING TECHNIQUES; PROBLEM DEFINITION; SECOND GROUP; STREAMING DATA; UNSUPERVISED METHOD; VERY LARGE DATABASE;

EID: 79952399177     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (27)

References (34)
  • 1
    • 36048938567 scopus 로고    scopus 로고
    • Informe técnico: TCD-CS-2004-15, Departament of Computer Science Trinity College, Dublin
    • A. Tsymbal, "The problem of concept drift: definitions and related work," Informe técnico: TCD-CS-2004-15, Departament of Computer Science Trinity College, Dublin, https://www.cs.tcd.ie/publications/techreports/ reports, vol. 4, pp. 2004-15, 2004.
    • (2004) The Problem of Concept Drift: Definitions and Related Work , vol.4 , pp. 2004-2015
    • Tsymbal, A.1
  • 3
    • 0038205905 scopus 로고    scopus 로고
    • Requirements for clustering data streams
    • D. Barbara, "Requirements for clustering data streams," ACM SIGKDD Explorations Newsletter, vol. 3, pp. 23-27, 2002.
    • (2002) ACM SIGKDD Explorations Newsletter , vol.3 , pp. 23-27
    • Barbara, D.1
  • 4
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • presented at
    • Zhang, Ramakrishnan, and L. M., "BIRCH: An efficient data clustering method for very large databases " presented at ACM SIGMOD Conference on Management of Data, 1996.
    • (1996) ACM SIGMOD Conference on Management of Data
    • Zhang1    Ramakrishnan2    M, L.3
  • 11
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • DOI 10.1023/A:1007612920971
    • I. Dhillon and D. Modha "Concept decompositions for large sparse text data using clustering " Machine Learning, vol. 42, pp. 143-175, 2001. (Pubitemid 32872402)
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 143-175
    • Dhillon, I.S.1    Modha, D.S.2
  • 12
    • 2542583128 scopus 로고    scopus 로고
    • Frequency - Sensitive competitive learning for scalable balanced clustering on high - Dimensional hyperspheres
    • Banerjee and J. Ghosh "Frequency - sensitive competitive learning for scalable balanced clustering on high - dimensional hyperspheres," IEEE Transactions on Neural Networks vol. 15, pp. 702-719, 2004.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , pp. 702-719
    • Banerjee1    Ghosh, J.2
  • 20
    • 79952428196 scopus 로고    scopus 로고
    • Density-based clustering for real-time stream data
    • presented at
    • Y. Chen and L. Tu, "Density-based clustering for real-time stream data," presented at KDD07, 2007.
    • (2007) KDD07
    • Chen, Y.1    Tu, L.2
  • 23
    • 49549099409 scopus 로고
    • Cluster analysis of large data sets
    • presented at W. Gaul and M. Schader, eds." New York, NY
    • H. Stahl " Cluster analysis of large data sets," presented at Classification as a Tool of Research, W. Gaul and M. Schader, eds." New York, NY :, 1986.
    • (1986) Classification As A Tool of Research
    • Stahl, H.1
  • 25
    • 66249136415 scopus 로고    scopus 로고
    • K-means divide and conquer clustering
    • presented at, Thiland, Bangkok
    • M. Khalilian, N. Mustapha, M. N. Sulaiman, and F. Z. Boroujeni, "K-Means Divide and Conquer Clustering," presented at ICCAE, Thiland, Bangkok, 2009.
    • (2009) ICCAE
    • Khalilian, M.1    Mustapha, N.2    Sulaiman, M.N.3    Boroujeni, F.Z.4
  • 26
    • 56249119506 scopus 로고    scopus 로고
    • Incremental clustering of dynamic data streams using connectivity based representative points
    • S. Lühr and M. Lazarescu, "Incremental clustering of dynamic data streams using connectivity based representative points," Data & Knowledge Engineering, vol. 68, pp. 1-27, 2009.
    • (2009) Data & Knowledge Engineering , vol.68 , pp. 1-27
    • Lühr, S.1    Lazarescu, M.2
  • 29
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • C. Fraley and A. E. Raftery, "Model-Based Clustering, Discriminant Analysis, and Density Estimation," Journal of the American Statistical Association, vol. 97, pp. 611-632, 2002.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 611-632
    • Fraley, C.1    Raftery, A.E.2
  • 31
    • 53749107899 scopus 로고    scopus 로고
    • Dimensionality reduction based on rough set theory: A review
    • K. Thangavel and A. Pethalakshmi, "Dimensionality reduction based on rough set theory: A review," Applied Soft Computing Journal, vol. 9, pp. 1-12, 2009.
    • (2009) Applied Soft Computing Journal , vol.9 , pp. 1-12
    • Thangavel, K.1    Pethalakshmi, A.2
  • 32
    • 53749097741 scopus 로고    scopus 로고
    • Similarity computing model of high dimension data for symptom classification of Chinese traditional medicine
    • J. Peng, C. Tang, D. Yang, J. Zhang, and J. Hu, "Similarity computing model of high dimension data for symptom classification of Chinese traditional medicine," Applied Soft Computing Journal, vol. 9, pp. 209-218, 2009.
    • (2009) Applied Soft Computing Journal , vol.9 , pp. 209-218
    • Peng, J.1    Tang, C.2    Yang, D.3    Zhang, J.4    Hu, J.5
  • 33
    • 67949110882 scopus 로고    scopus 로고
    • A JOHN WILEY & SONS, INC., PUBLICATION
    • R. XU and I. DONALD C. WUNSCH, clustering: A JOHN WILEY & SONS, INC., PUBLICATION, 2008.
    • (2008) Clustering
    • Xu, R.1    Donald, I.2    Wunsch, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.