메뉴 건너뛰기




Volumn 15, Issue 3, 2004, Pages 702-718

Frequency-sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres

Author keywords

Balanced clustering; Expectation maximization (EM); Frequency sensitive competitive learning (FSCL); High dimensional clustering; Kmeans; Normalized data; Scalable clustering; Streaming data; Text clustering

Indexed keywords

LEARNING ALGORITHMS; MATHEMATICAL MODELS; MAXIMUM LIKELIHOOD ESTIMATION; PROBABILITY DISTRIBUTIONS; VECTORS;

EID: 2542583128     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2004.824416     Document Type: Article
Times cited : (99)

References (58)
  • 2
    • 2542613410 scopus 로고    scopus 로고
    • Scalable clustering
    • N. Ye, Ed. Mahwah, NJ: Lawrence Erlbaum Assoc.
    • J. Ghosh, "Scalable clustering," in The Handbook of Data Mining, N. Ye, Ed. Mahwah, NJ: Lawrence Erlbaum Assoc., 2003, pp. 247-277.
    • (2003) The Handbook of Data Mining , pp. 247-277
    • Ghosh, J.1
  • 3
    • 84898995769 scopus 로고    scopus 로고
    • Clustering sequences with hidden markov models
    • M. J. M. C. Mozer and T. Petsche, Eds. Cambridge, MA: MIT Press
    • P. Smyth, "Clustering sequences with Hidden Markov Models," in Advances in Neural Information Processing Systems-9, M. J. M. C. Mozer and T. Petsche, Eds. Cambridge, MA: MIT Press, 1997, vol. 9, pp. 648-654.
    • (1997) Advances in Neural Information Processing Systems-9 , vol.9 , pp. 648-654
    • Smyth, P.1
  • 4
    • 0003857778 scopus 로고    scopus 로고
    • A gentle tutorial of the em algorithm and its application to par estimation for Gaussian mixture and hidden markov models
    • Univ. California, Berkeley, CA Tech. Rep.
    • J. A. Blimes, "A gentle tutorial of the em algorithm and its application to par estimation for Gaussian mixture and hidden markov models,", Univ. California, Berkeley, CA Tech. Rep., 1998.
    • (1998)
    • Blimes, J.A.1
  • 5
    • 0032202775 scopus 로고    scopus 로고
    • Deterministic annealing for clustering, compression, classification, regression, and related optimization problems
    • Nov.
    • K. Rose, "Deterministic annealing for clustering, compression, classification, regression, and related optimization problems," Proc. IEEE, vol. 86, pp. 2210-39, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , pp. 2210-2239
    • Rose, K.1
  • 6
    • 84898982939 scopus 로고    scopus 로고
    • Exploiting generative models in discriminative classifiers
    • M. S. Kearns, S. A. Solla, and D. D. Cohn, Eds. Cambridge, MA: MIT Press
    • T. S. Jaakkola and D. Haussler, "Exploiting generative models in discriminative classifiers," in Advances in Neural Information Processing Systems-11, M. S. Kearns, S. A. Solla, and D. D. Cohn, Eds. Cambridge, MA: MIT Press, 1999, vol. 11, pp. 487-493.
    • (1999) Advances in Neural Information Processing Systems-11 , vol.11 , pp. 487-493
    • Jaakkola, T.S.1    Haussler, D.2
  • 11
    • 2542587466 scopus 로고    scopus 로고
    • Relationship-based clustering and visualization for high-dimensional data mining
    • Spring
    • A. Strehl and J. Ghosh, "Relationship-based clustering and visualization for high-dimensional data mining," INFORMS J. Computing, vol. 15, no. 2, Spring 2003.
    • (2003) INFORMS J. Computing , vol.15 , Issue.2
    • Strehl, A.1    Ghosh, J.2
  • 12
    • 0002109783 scopus 로고
    • An overview of predictive learning and function approximation
    • V. Cherkassky, J. Friedman, and H. Wechsler, Eds.
    • J. H. Friedman, "An overview of predictive learning and function approximation," in Proc. From Statistics to Neural Networks, NATO/ASI Workshop, V. Cherkassky, J. Friedman, and H. Wechsler, Eds., 1994, pp. 1-61.
    • (1994) Proc. From Statistics to Neural Networks, NATO/ASI Workshop , pp. 1-61
    • Friedman, J.H.1
  • 13
    • 0035111359 scopus 로고    scopus 로고
    • A unified model for probabilistic principal surfaces
    • Jan.
    • K. Chang and J. Ghosh, "A unified model for probabilistic principal surfaces," IEEE Trans. Pattern Anal. Machine Intell., vol. 23, pp. 22-41, Jan. 2001.
    • (2001) IEEE Trans. Pattern Anal. Machine Intell. , vol.23 , pp. 22-41
    • Chang, K.1    Ghosh, J.2
  • 14
    • 0030737323 scopus 로고    scopus 로고
    • Modeling the manifolds of images of handwritten digits
    • Jan.
    • G. Hinton, P. Dayan, and M. Revow, "Modeling the manifolds of images of handwritten digits," IEEE Trans. Neural Networks, vol. 8, pp. 65-74, Jan. 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 65-74
    • Hinton, G.1    Dayan, P.2    Revow, M.3
  • 16
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • Jan.
    • I. S. Dhillon and D. S. Modha, "Concept decompositions for large sparse text data using clustering," Mach. Learn., vol. 42, no. 1, pp. 143-175, Jan. 2001.
    • (2001) Mach. Learn. , vol.42 , Issue.1 , pp. 143-175
    • Dhillon, I.S.1    Modha, D.S.2
  • 17
    • 0003219068 scopus 로고    scopus 로고
    • Efficient clustering of very large document collections
    • V. K. R. Grossman, C. Kamath, and R. Namburu, Eds. Norwell, MA: Kluwer
    • I. S. Dhillon, J. Fan, and Y. Guan, "Efficient clustering of very large document collections," in Data Mining for Scientific and Engineering Applications, V. K. R. Grossman, C. Kamath, and R. Namburu, Eds. Norwell, MA: Kluwer, 2001.
    • (2001) Data Mining for Scientific and Engineering Applications
    • Dhillon, I.S.1    Fan, J.2    Guan, Y.3
  • 20
    • 0017120827 scopus 로고
    • Adaptive pattern classification and universal recoding: 1. Parallel development and coding of neural feature detectors
    • S. Grossberg, "Adaptive pattern classification and universal recoding: 1. Parallel development and coding of neural feature detectors," Biol. Cybern., vol. 23, pp. 121-134, 1976.
    • (1976) Biol. Cybern. , vol.23 , pp. 121-134
    • Grossberg, S.1
  • 21
    • 0002656190 scopus 로고
    • Feature discovery by competitive learning
    • D. E. Rumelhart and D. Zipser, "Feature discovery by competitive learning," Cogn. Sci., vol. 9, pp. 75-112, 1985.
    • (1985) Cogn. Sci. , vol.9 , pp. 75-112
    • Rumelhart, D.E.1    Zipser, D.2
  • 22
    • 0023137539 scopus 로고
    • Cortical dynamics of three-dimensional form, color and brightness perception, I: Monocular theory
    • S. Grossberg, "Cortical dynamics of three-dimensional form, color and brightness perception, I: Monocular theory," Percep. Psychophys., vol. 41, pp. 87-116, 1987.
    • (1987) Percep. Psychophys. , vol.41 , pp. 87-116
    • Grossberg, S.1
  • 23
    • 0036506135 scopus 로고    scopus 로고
    • Self-splitting competitive learning: A new on-line clustering paradigm
    • Mar.
    • Y. J. Zhang and Z. Q. Liu, "Self-splitting competitive learning: A new on-line clustering paradigm," IEEE Trans. Neural Networks, vol. 13, pp. 369-380, Mar. 2002.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 369-380
    • Zhang, Y.J.1    Liu, Z.Q.2
  • 26
    • 0025225150 scopus 로고
    • Competitive learning algorithms for vector quantization
    • S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E. Melton, "Competitive learning algorithms for vector quantization," Neural Networks, vol. 3, no. 3, pp. 277-290, 1990.
    • (1990) Neural Networks , vol.3 , pp. 277-290
    • Ahalt, S.C.1    Krishnamurthy, A.K.2    Chen, P.3    Melton, D.E.4
  • 31
    • 0036133934 scopus 로고    scopus 로고
    • Clustering based on conditional distributions in an auxiliary space
    • J. Sinkkonen and S. Kaski, "Clustering based on conditional distributions in an auxiliary space," Neural Computat., vol. 14, pp. 217-239, 2002.
    • (2002) Neural Computat. , vol.14 , pp. 217-239
    • Sinkkonen, J.1    Kaski, S.2
  • 36
    • 0030142919 scopus 로고    scopus 로고
    • Codeword distribution for frequency sensitive competitive learning with one dimensional input data
    • May
    • A. S. Galanopoulos and S. C. Ahalt, "Codeword distribution for frequency sensitive competitive learning with one dimensional input data," IEEE Trans. Neural Networks, vol. 7, pp. 752-756, May 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 752-756
    • Galanopoulos, A.S.1    Ahalt, S.C.2
  • 37
    • 0031233465 scopus 로고    scopus 로고
    • Diffusion approximation of frequency sensitive competitive learning
    • Sept.
    • A. S. Galanopoulos, R. L. Moses, and S. C. Ahalt, "Diffusion approximation of frequency sensitive competitive learning," IEEE Trans. Neural Networks, vol. 8, pp. 1026-1030, Sept. 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 1026-1030
    • Galanopoulos, A.S.1    Moses, R.L.2    Ahalt, S.C.3
  • 39
    • 0001904039 scopus 로고
    • The future of time series: Learning and understanding
    • A. S. Weigend, and N. Gershenfeld, Eds. Reading, MA: Addison-Wesley
    • N. Gershenfeld and A. Weigend, "The future of time series: Learning and understanding," in Time Series Prediction, A. S. Weigend, and N. Gershenfeld, Eds. Reading, MA: Addison-Wesley, 1993, pp. 243-264.
    • (1993) Time Series Prediction , pp. 243-264
    • Gershenfeld, N.1    Weigend, A.2
  • 40
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: Perceptron, madaline and backpropagation
    • Sept.
    • B. Widrow and M. A. Lehr, "30 years of adaptive neural networks: Perceptron, madaline and backpropagation," Proc. IEEE, vol. 78, pp. 1415-1442, Sept. 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.A.2
  • 41
    • 0002291616 scopus 로고
    • Neural network architectures for temporal sequence processing
    • A. S. Weigend and N. Gershenfeld, Eds. Reading, MA: Addison-Wesley
    • M. C. Mozer, "Neural network architectures for temporal sequence processing," in Time Series Prediction, A. S. Weigend and N. Gershenfeld, Eds. Reading, MA: Addison-Wesley, 1993, pp. 243-264.
    • (1993) Time Series Prediction , pp. 243-264
    • Mozer, M.C.1
  • 42
    • 0023336094 scopus 로고
    • Neural networks that learn temporal sequences by selection
    • May
    • J.-P.C.S. Dehaene and J.-P. Nadal, "Neural networks that learn temporal sequences by selection," in Proc. Nat. Academy Sciences, vol. 84, May 1987, pp. 2727-2731.
    • (1987) Proc. Nat. Academy Sciences , vol.84 , pp. 2727-2731
    • Dehaene, J.-P.C.S.1    Nadal, J.-P.2
  • 43
    • 0031171347 scopus 로고    scopus 로고
    • A habituation based neural network for spatio-temporal classification
    • July
    • B. W. Stiles and J. Ghosh, "A habituation based neural network for spatio-temporal classification," Neurocomputing, vol. 15, pp. 273-303, July 1997.
    • (1997) Neurocomputing , vol.15 , pp. 273-303
    • Stiles, B.W.1    Ghosh, J.2
  • 47
    • 49149095674 scopus 로고    scopus 로고
    • Detecting seasonal trends and cluster motion visualization for very high dimensional transactional data
    • G. K. Gupta and J. Ghosh, "Detecting seasonal trends and cluster motion visualization for very high dimensional transactional data," in Proc. 1st Siam Conf. Data Mining, (SDM2001), 2001, pp. 115-129.
    • Proc. 1st Siam Conf. Data Mining, (SDM2001), 2001 , pp. 115-129
    • Gupta, G.K.1    Ghosh, J.2
  • 48
    • 0026151470 scopus 로고
    • A neural network approach to statistical pattern classification by 'semiparametric' estimation of probability density functions
    • May
    • H. G. C. Tråvén, "A neural network approach to statistical pattern classification by 'semiparametric' estimation of probability density functions," IEEE Trans. Neural Networks, vol. 2, pp. 366-377, May 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 366-377
    • Tråvén, H.G.C.1
  • 49
    • 0032786303 scopus 로고    scopus 로고
    • Structurally adaptive modular networks for nonstationary environments
    • V. Ramamurti and J. Ghosh, "Structurally adaptive modular networks for nonstationary environments," IEEE Trans. Neural Networks, vol. 10, pp. 152-60, 1999.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 152-160
    • Ramamurti, V.1    Ghosh, J.2
  • 50
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan, Ed. Cambridge, MA: MIT Press
    • R. M. Neal and G. E. Hinton, "A view of the EM algorithm that justifies incremental, sparse, and other variants," in Learning in Graphical Models, M. I. Jordan, Ed. Cambridge, MA: MIT Press, 1998, pp. 355-368.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 51
    • 0028401274 scopus 로고
    • An analysis of the gamma memory in dynamic neural networks
    • Mar.
    • J. C. Principe, J.-M. Kuo, and S. Celebi, "An analysis of the gamma memory in dynamic neural networks," IEEE Trans. Neural Networks, vol. 5, pp. 331-337, Mar. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 331-337
    • Principe, J.C.1    Kuo, J.-M.2    Celebi, S.3
  • 55
    • 0003740921 scopus 로고    scopus 로고
    • An experimental comparison of several clustering and initialization methods
    • Microsoft Research Tech. Rep. MSR-TR-98-06
    • M. Meila and D. Heckerman, "An Experimental Comparison of Several Clustering and Initialization Methods," Microsoft Research Tech. Rep. MSR-TR-98-06, 1998.
    • (1998)
    • Meila, M.1    Heckerman, D.2
  • 56
    • 0016355478 scopus 로고
    • A new look at statistical model identification
    • Dec.
    • H. Akaike, "A new look at statistical model identification," IEEE Trans. Automat. Contr., vol. AU-19, pp. 716-722, Dec. 1974.
    • (1974) IEEE Trans. Automat. Contr. , vol.AU-19 , pp. 716-722
    • Akaike, H.1
  • 57
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwatz, "Estimating the dimension of a model," Ann. Statistics, vol. 6, no. 2, 1978.
    • (1978) Ann. Statistics , vol.6 , Issue.2
    • Schwatz, G.1
  • 58
    • 77956889087 scopus 로고
    • Reversible jump markov chain monte carlo computation and bayesian model determination
    • P. J. Green, "Reversible jump markov chain monte carlo computation and bayesian model determination," Biometrika, vol. 82, pp. 711-732, 1995.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.