-
1
-
-
0141734591
-
-
Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
-
R. Rifkin, "Everything old is new again: A fresh look at historical approaches in machine learning," Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 2002.
-
(2002)
Everything Old Is New Again: A Fresh Look at Historical Approaches in Machine Learning
-
-
Rifkin, R.1
-
2
-
-
0037695279
-
-
World Scientific Pub. Co., Singapore
-
J. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle, Least Squares Support Vector Machines. World Scientific Pub. Co., Singapore, 2002.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
3
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
A. E. Hoerl and R. W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems," Technometrics, vol. 12, pp. 55-67, 1970.
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
4
-
-
60949111976
-
Learning to rank with pairwise regularized least-squares
-
T. Joachims, H. Li, T.-Y. Liu, and C. Zhai, Eds.
-
T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Boberg, and T. Salakoski, "Learning to rank with pairwise regularized least-squares," in SIGIR 2007 Workshop on Learning to Rank for Information Retrieval, T. Joachims, H. Li, T.-Y. Liu, and C. Zhai, Eds., 2007, pp. 27-33.
-
(2007)
SIGIR 2007 Workshop on Learning to Rank for Information Retrieval
, pp. 27-33
-
-
Pahikkala, T.1
Tsivtsivadze, E.2
Airola, A.3
Boberg, J.4
Salakoski, T.5
-
5
-
-
60949112451
-
An efficient algorithm for learning to rank from preference graphs
-
T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Boberg, and J. Järvinen, "An efficient algorithm for learning to rank from preference graphs," Machine Learning, vol. 75, no. 1, pp. 129-165, 2009.
-
(2009)
Machine Learning
, vol.75
, Issue.1
, pp. 129-165
-
-
Pahikkala, T.1
Tsivtsivadze, E.2
Airola, A.3
Boberg, J.4
Järvinen, J.5
-
6
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
7
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artificial Intelligence, vol. 97, no. 1-2, pp. 273-324, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
8
-
-
85099325734
-
Irrelevant features and the subset selection problem
-
W. W. Cohen and H. Hirsch, Eds. San Fransisco, CA: Morgan Kaufmann Publishers
-
G. H. John, R. Kohavi, and K. Pfleger, "Irrelevant features and the subset selection problem," in Proceedings of the Eleventh International Conference on Machine Learning, W. W. Cohen and H. Hirsch, Eds. San Fransisco, CA: Morgan Kaufmann Publishers, 1994, pp. 121-129.
-
(1994)
Proceedings of the Eleventh International Conference on Machine Learning
, pp. 121-129
-
-
John, G.H.1
Kohavi, R.2
Pfleger, K.3
-
9
-
-
33645157313
-
Gene selection algorithms for microarray data based on least squares support vector machine
-
E. K. Tang, P. N. Suganthan, and X. Yao, "Gene selection algorithms for microarray data based on least squares support vector machine," BMC Bioinformatics, vol. 7, p. 95, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 95
-
-
Tang, E.K.1
Suganthan, P.N.2
Yao, X.3
-
10
-
-
40649092045
-
Low rank updated LS-SVM classifiers for fast variable selection
-
advances in Neural Networks Research: IJCNN '07
-
F. Ojeda, J. A. Suykens, and B. D. Moor, "Low rank updated LS-SVM classifiers for fast variable selection," Neural Networks, vol. 21, no. 2-3, pp. 437-449, 2008, advances in Neural Networks Research: IJCNN '07.
-
(2008)
Neural Networks
, vol.21
, Issue.2-3
, pp. 437-449
-
-
Ojeda, F.1
Suykens, J.A.2
Moor, B.D.3
-
11
-
-
44649153951
-
-
Massachusetts Institute of Technology, Tech. Rep. MIT-CSAIL-TR-2007-025
-
R. Rifkin and R. Lippert, "Notes on regularized least squares," Massachusetts Institute of Technology, Tech. Rep. MIT-CSAIL-TR-2007-025, 2007.
-
(2007)
Notes on Regularized Least Squares
-
-
Rifkin, R.1
Lippert, R.2
-
12
-
-
78449310771
-
Feature selection for regularized least-squares: New computational short-cuts and fast algorithmic implementations
-
S. Kaski, D. J. Miller, E. Oja, and A. Honkela, Eds. IEEE
-
T. Pahikkala, A. Airola, and T. Salakoski, "Feature selection for regularized least-squares: New computational short-cuts and fast algorithmic implementations," in Proceedings of the Twentieth IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2010), S. Kaski, D. J. Miller, E. Oja, and A. Honkela, Eds. IEEE, 2010.
-
(2010)
Proceedings of the Twentieth IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2010)
-
-
Pahikkala, T.1
Airola, A.2
Salakoski, T.3
-
13
-
-
79952409534
-
Greedy RankRLS: A linear time algorithm for learning sparse ranking models
-
E. Gabrilovich, A. J. Smola, and N. Tishby, Eds. ACM
-
T. Pahikkala, A. Airola, P. Naula, and T. Salakoski, "Greedy RankRLS: a linear time algorithm for learning sparse ranking models," in SIGIR 2010 Workshop on Feature Generation and Selection for Information Retrieval, E. Gabrilovich, A. J. Smola, and N. Tishby, Eds. ACM, 2010, pp. 11-18.
-
(2010)
SIGIR 2010 Workshop on Feature Generation and Selection for Information Retrieval
, pp. 11-18
-
-
Pahikkala, T.1
Airola, A.2
Naula, P.3
Salakoski, T.4
-
15
-
-
0002619965
-
Ridge regression learning algorithm in dual variables
-
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
-
C. Saunders, A. Gammerman, and V. Vovk, "Ridge regression learning algorithm in dual variables," in Proceedings of the Fifteenth International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998, pp. 515-521.
-
(1998)
Proceedings of the Fifteenth International Conference on Machine Learning
, pp. 515-521
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
16
-
-
42249094907
-
Support vector machine solvers
-
Large-Scale Kernel Machines, ser. L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Eds. Cambridge, MA, USA: MIT Press
-
L. Bottou and C.-J. Lin, "Support vector machine solvers," in Large-Scale Kernel Machines, ser. Neural Information Processing, L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Eds. Cambridge, MA, USA: MIT Press, 2007, pp. 1-28.
-
(2007)
Neural Information Processing
, pp. 1-28
-
-
Bottou, L.1
Lin, C.-J.2
-
17
-
-
21144474350
-
Linear model selection by cross-validation
-
J. Shao, "Linear model selection by cross-validation," Journal of the American Statistical Association, vol. 88, no. 422, pp. 486-494, 1993.
-
(1993)
Journal of the American Statistical Association
, vol.88
, Issue.422
, pp. 486-494
-
-
Shao, J.1
-
18
-
-
84862520910
-
Fast n-fold cross-validation for regularized least-squares
-
T. Honkela, T. Raiko, J. Kortela, and H. Valpola, Eds. Espoo, Finland: Otamedia
-
T. Pahikkala, J. Boberg, and T. Salakoski, "Fast n-fold cross-validation for regularized least-squares," in Proceedings of the Ninth Scandinavian Conference on Artificial Intelligence (SCAI 2006), T. Honkela, T. Raiko, J. Kortela, and H. Valpola, Eds. Espoo, Finland: Otamedia, 2006, pp. 83-90.
-
(2006)
Proceedings of the Ninth Scandinavian Conference on Artificial Intelligence (SCAI 2006)
, pp. 83-90
-
-
Pahikkala, T.1
Boberg, J.2
Salakoski, T.3
-
19
-
-
34147111649
-
Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression
-
S. An, W. Liu, and S. Venkatesh, "Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression," Pattern Recognition, vol. 40, no. 8, pp. 2154-2162, 2007.
-
(2007)
Pattern Recognition
, vol.40
, Issue.8
, pp. 2154-2162
-
-
An, S.1
Liu, W.2
Venkatesh, S.3
|