메뉴 건너뛰기




Volumn , Issue , 2010, Pages 325-330

Speeding up greedy forward selection for regularized least-squares

Author keywords

[No Author keywords available]

Indexed keywords

CROSS VALIDATION; DATA SETS; FEATURE SELECTION; FEATURE SETS; GREEDY FORWARD; LEAST SQUARE; LEAST SQUARES SUPPORT VECTOR MACHINES; LEAVE-ONE-OUT; MATRIX CALCULUS; NOVEL ALGORITHM; RIDGE REGRESSION; SIDE EFFECT; TIME COMPLEXITY; TRAINING ALGORITHMS; TRAINING EXAMPLE;

EID: 79952369514     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLA.2010.55     Document Type: Conference Paper
Times cited : (22)

References (19)
  • 3
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems," Technometrics, vol. 12, pp. 55-67, 1970.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 5
    • 60949112451 scopus 로고    scopus 로고
    • An efficient algorithm for learning to rank from preference graphs
    • T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Boberg, and J. Järvinen, "An efficient algorithm for learning to rank from preference graphs," Machine Learning, vol. 75, no. 1, pp. 129-165, 2009.
    • (2009) Machine Learning , vol.75 , Issue.1 , pp. 129-165
    • Pahikkala, T.1    Tsivtsivadze, E.2    Airola, A.3    Boberg, J.4    Järvinen, J.5
  • 6
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 7
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artificial Intelligence, vol. 97, no. 1-2, pp. 273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 8
    • 85099325734 scopus 로고
    • Irrelevant features and the subset selection problem
    • W. W. Cohen and H. Hirsch, Eds. San Fransisco, CA: Morgan Kaufmann Publishers
    • G. H. John, R. Kohavi, and K. Pfleger, "Irrelevant features and the subset selection problem," in Proceedings of the Eleventh International Conference on Machine Learning, W. W. Cohen and H. Hirsch, Eds. San Fransisco, CA: Morgan Kaufmann Publishers, 1994, pp. 121-129.
    • (1994) Proceedings of the Eleventh International Conference on Machine Learning , pp. 121-129
    • John, G.H.1    Kohavi, R.2    Pfleger, K.3
  • 9
    • 33645157313 scopus 로고    scopus 로고
    • Gene selection algorithms for microarray data based on least squares support vector machine
    • E. K. Tang, P. N. Suganthan, and X. Yao, "Gene selection algorithms for microarray data based on least squares support vector machine," BMC Bioinformatics, vol. 7, p. 95, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 95
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 10
    • 40649092045 scopus 로고    scopus 로고
    • Low rank updated LS-SVM classifiers for fast variable selection
    • advances in Neural Networks Research: IJCNN '07
    • F. Ojeda, J. A. Suykens, and B. D. Moor, "Low rank updated LS-SVM classifiers for fast variable selection," Neural Networks, vol. 21, no. 2-3, pp. 437-449, 2008, advances in Neural Networks Research: IJCNN '07.
    • (2008) Neural Networks , vol.21 , Issue.2-3 , pp. 437-449
    • Ojeda, F.1    Suykens, J.A.2    Moor, B.D.3
  • 11
    • 44649153951 scopus 로고    scopus 로고
    • Massachusetts Institute of Technology, Tech. Rep. MIT-CSAIL-TR-2007-025
    • R. Rifkin and R. Lippert, "Notes on regularized least squares," Massachusetts Institute of Technology, Tech. Rep. MIT-CSAIL-TR-2007-025, 2007.
    • (2007) Notes on Regularized Least Squares
    • Rifkin, R.1    Lippert, R.2
  • 16
    • 42249094907 scopus 로고    scopus 로고
    • Support vector machine solvers
    • Large-Scale Kernel Machines, ser. L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Eds. Cambridge, MA, USA: MIT Press
    • L. Bottou and C.-J. Lin, "Support vector machine solvers," in Large-Scale Kernel Machines, ser. Neural Information Processing, L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Eds. Cambridge, MA, USA: MIT Press, 2007, pp. 1-28.
    • (2007) Neural Information Processing , pp. 1-28
    • Bottou, L.1    Lin, C.-J.2
  • 17
    • 21144474350 scopus 로고
    • Linear model selection by cross-validation
    • J. Shao, "Linear model selection by cross-validation," Journal of the American Statistical Association, vol. 88, no. 422, pp. 486-494, 1993.
    • (1993) Journal of the American Statistical Association , vol.88 , Issue.422 , pp. 486-494
    • Shao, J.1
  • 19
    • 34147111649 scopus 로고    scopus 로고
    • Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression
    • S. An, W. Liu, and S. Venkatesh, "Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression," Pattern Recognition, vol. 40, no. 8, pp. 2154-2162, 2007.
    • (2007) Pattern Recognition , vol.40 , Issue.8 , pp. 2154-2162
    • An, S.1    Liu, W.2    Venkatesh, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.