메뉴 건너뛰기




Volumn , Issue , 2010, Pages 295-300

Feature selection for regularized least-squares: New computational short-cuts and fast algorithmic implementations

Author keywords

[No Author keywords available]

Indexed keywords

EFFICIENT IMPLEMENTATION; FEATURE SELECTION; FEATURE SELECTION ALGORITHM; LEAST SQUARE; LEAST SQUARES SUPPORT VECTOR MACHINES; LEAVE-ONE-OUT CRITERIONS; LINEAR PREDICTORS; OPTIMAL SEARCH; POWER SET; RIDGE REGRESSION; SEARCH HEURISTICS; TRAINING EXAMPLE;

EID: 78449310771     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/MLSP.2010.5589210     Document Type: Conference Paper
Times cited : (2)

References (17)
  • 1
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 2
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G.H. John, "Wrappers for feature subset selection," Artificial Intelligence, vol. 97, no. 1-2, pp. 273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 3
    • 85099325734 scopus 로고
    • Irrelevant features and the subset selection problem
    • William W. Cohen and Haym Hirsch, Eds., San Fransisco, CA, Morgan Kaufmann Publishers
    • George H. John, Ron Kohavi, and Karl Pfleger, "Irrelevant features and the subset selection problem," in Proceedings of the Eleventh International Conference on Machine Learning, William W. Cohen and Haym Hirsch, Eds., San Fransisco, CA, 1994, pp. 121-129, Morgan Kaufmann Publishers.
    • (1994) Proceedings of the Eleventh International Conference on Machine Learning , pp. 121-129
    • George, H.1    John, R.K.2    Pfleger, K.3
  • 4
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • P. Pudil, J. Novovičová, and J. Kittler, "Floating search methods in feature selection," Pattern Recogn. Lett., vol. 15, no. 11, pp. 1119-1125, 1994.
    • (1994) Pattern Recogn. Lett. , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovičová, J.2    Kittler, J.3
  • 5
    • 84863393425 scopus 로고    scopus 로고
    • Adaptive forward-backward greedy algorithm for sparse learning with linear models
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds., MIT Press
    • T. Zhang, "Adaptive forward-backward greedy algorithm for sparse learning with linear models," in Advances in Neural Information Processing Systems 21, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds., pp. 1921-1928. MIT Press, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 1921-1928
    • Zhang, T.1
  • 6
    • 33749830485 scopus 로고    scopus 로고
    • Speeding up the wrapper feature subset selection in regression by mutual information relevance and redundancy analysis
    • Proceedings of the 16th International Conference on Artificial Neural Networks (ICANN 2006), S.D. Kollias, A. Stafylopatis, W. Duch, and E. Oja, Eds. 2006 Springer
    • G. Van Dijck and M.M. Van Hulle, "Speeding up the wrapper feature subset selection in regression by mutual information relevance and redundancy analysis," in Proceedings of the 16th International Conference on Artificial Neural Networks (ICANN 2006), S.D. Kollias, A. Stafylopatis, W. Duch, and E. Oja, Eds. 2006, vol. 4131 of Lecture Notes in Computer Science, pp. 31-40, Springer.
    • Lecture Notes in Computer Science , vol.4131 , pp. 31-40
    • Van Dijck, G.1    Van Hulle, M.M.2
  • 7
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems," Technometrics, vol. 12, pp. 55-67, 1970.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 9
    • 9444250658 scopus 로고    scopus 로고
    • Regularized least-squares classification
    • Advances in Learning Theory: Methods, Model and Applications, J.A.K. Suykens, G. Horvath, S. Basu, C. Micchelli, and J. Vandewalle, Eds., chapter 7, IOS Press, Amsterdam
    • R. Rifkin, G. Yeo, and T. Poggio, "Regularized least-squares classification," in Advances in Learning Theory: Methods, Model and Applications, J.A.K. Suykens, G. Horvath, S. Basu, C. Micchelli, and J. Vandewalle, Eds., vol. 190 of NATO Science Series III: Computer and System Sciences, chapter 7, pp. 131-154. IOS Press, Amsterdam, 2003.
    • (2003) NATO Science Series III: Computer and System Sciences , vol.190 , pp. 131-154
    • Rifkin, R.1    Yeo, G.2    Poggio, T.3
  • 11
    • 60949112451 scopus 로고    scopus 로고
    • An efficient algorithm for learning to rank from preference graphs
    • T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Boberg, and J. Järvinen, "An efficient algorithm for learning to rank from preference graphs," Machine Learning, vol. 75, no. 1, pp. 129-165, 2009.
    • (2009) Machine Learning , vol.75 , Issue.1 , pp. 129-165
    • Pahikkala, T.1    Tsivtsivadze, E.2    Airola, A.3    Boberg, J.4    Järvinen, J.5
  • 13
    • 44649153951 scopus 로고    scopus 로고
    • Tech. Rep. MIT-CSAIL-TR-2007-025, Massachusetts Institute of Technology
    • R. Rifkin and R. Lippert, "Notes on regularized least squares," Tech. Rep. MIT-CSAIL-TR-2007-025, Massachusetts Institute of Technology, 2007.
    • (2007) Notes on Regularized Least Squares
    • Rifkin, R.1    Lippert, R.2
  • 14
    • 33645157313 scopus 로고    scopus 로고
    • Gene selection algorithms for microarray data based on least squares support vector machine
    • E.K. Tang, P.N. Suganthan, and X. Yao, "Gene selection algorithms for microarray data based on least squares support vector machine," BMC Bioinformatics, vol. 7, pp. 95, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 95
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 15
    • 40649092045 scopus 로고    scopus 로고
    • Low rank updated LS-SVM classifiers for fast variable selection
    • F. Ojeda, J.A.K. Suykens, and B. De Moor, "Low rank updated LS-SVM classifiers for fast variable selection," Neural Networks, vol. 21, no. 2-3, pp. 437-449, 2008.
    • (2008) Neural Networks , vol.21 , Issue.2-3 , pp. 437-449
    • Ojeda, F.1    Suykens, J.A.K.2    De Moor, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.