메뉴 건너뛰기




Volumn , Issue , 2009, Pages 931-937

Detecting and reacting on drifts and shifts in on-line data streams with evolving fuzzy systems

Author keywords

Age of a cluster fuzzy rule; Detection and reaction to drifts and shifts; Drifts and shifts in data streams; Evolving fuzzy systems; Gradual forgetting

Indexed keywords

AGE OF A CLUSTER/FUZZY RULE; ALTERNATIVE METHODS; AUTOMATIC ADAPTATION; AUTOMATIC DETECTION; DATA STREAM; DENSITY-BASED CLUSTERING; EMPIRICAL EVALUATIONS; EVOLVING FUZZY SYSTEMS; FUZZY MODELS; GRADUAL FORGETTING; LEARNING RATES; LOCAL LEARNING; ONLINE DATA; REAL WORLD DATA; SUB-PROBLEMS; VECTOR QUANTIZATION APPROACH;

EID: 79951871855     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (28)
  • 1
    • 23944495345 scopus 로고    scopus 로고
    • Simpl eTS: A simplified method for learning evolving takagi-sugeno fuzzy models
    • Reno, Nevada, U.S.A
    • P. Angelov and D. Filev. Simpl eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models. In Proceedings of FUZZ-IEEE 2005, pages 1068-1073, Reno, Nevada, U.S.A., 2005.
    • (2005) Proceedings of FUZZ-IEEE 2005 , pp. 1068-1073
    • Angelov, P.1    Filev, D.2
  • 2
    • 58149524918 scopus 로고    scopus 로고
    • Evolving fuzzy-rule-based classifiers from data streams
    • P. Angelov and X. Zhou. Evolving fuzzy-rule-based classifiers from data streams. IEEE Transactions on Fuzzy Systems, 16(6): 1462-1475, 2008.
    • (2008) IEEE Transactions on Fuzzy Systems , vol.16 , Issue.6 , pp. 1462-1475
    • Angelov, P.1    Zhou, X.2
  • 3
    • 78549290961 scopus 로고    scopus 로고
    • Evolving takagi-sugeno fuzzy systems from streaming data, eTS+
    • P. Angelov, D. Filev, and N. Kasabov, editors page to appear. John Wiley & Sons, New York
    • P.P. Angelov. Evolving Takagi-Sugeno fuzzy systems from streaming data, eTS+. In P. Angelov, D. Filev, and N. Kasabov, editors, Evolving Intelligent Systems: Methodology and Applications, page to appear. John Wiley & Sons, New York, 2008.
    • (2008) Evolving Intelligent Systems: Methodology and Applications
    • Angelov, P.P.1
  • 4
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of takagi-sugeno fuzzy models
    • P.P. Angelov and D. Filev. An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. on Systems, Man and Cybernetics, part B, 34(1): 484-498, 2004.
    • (2004) IEEE Trans. on Systems, Man and Cybernetics , vol.34 , Issue.1 PART B , pp. 484-498
    • Angelov, P.P.1    Filev, D.2
  • 5
    • 53149134642 scopus 로고    scopus 로고
    • Evolving fuzzy classifiers using different model architectures
    • P.P. Angelov, E. Lughofer, and X. Zhou. Evolving fuzzy classifiers using different model architectures. Fuzzy Sets and Systems, 159(23): 3160-3182, 2008.
    • (2008) Fuzzy Sets and Systems , vol.159 , Issue.23 , pp. 3160-3182
    • Angelov, P.P.1    Lughofer, E.2    Zhou, X.3
  • 7
    • 51349124012 scopus 로고    scopus 로고
    • Efficient instance-based learning on data streams
    • J. Beringer and E. Hüllermeier. Efficient instance-based learning on data streams. Intelligent Data Analysis, 11(6): 627-650, 2007.
    • (2007) Intelligent Data Analysis , vol.11 , Issue.6 , pp. 627-650
    • Beringer, J.1    Hüllermeier, E.2
  • 12
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • N. Sundararajan H.-J. Rong, G.-B. Huang, and P. Saratchandran. Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets and Syst., 157(9): 1260-1275, 2006.
    • (2006) Fuzzy Sets and Syst , vol.157 , Issue.9 , pp. 1260-1275
    • Sundararajan, N.1    Rong, H.-J.2    Huang, G.-B.3    Saratchandran, P.4
  • 13
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • N. K. Kasabov and Q. Song. DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. on Fuzzy Systems, 10(2): 144-154, 2002.
    • (2002) IEEE Trans. on Fuzzy Systems , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 14
    • 84883713774 scopus 로고    scopus 로고
    • Learning drifting concepts: Example selection vs. Example weighting
    • R. Klinkenberg. Learning drifting concepts: Example selection vs. example weighting. Intelligent Data Analysis, Vol. 8 (3), pages 281-300, 2004.
    • (2004) Intelligent Data Analysis , vol.8 , Issue.3 , pp. 281-300
    • Klinkenberg, R.1
  • 15
    • 11244351634 scopus 로고    scopus 로고
    • An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network
    • G. Leng, T.M McGinnity, and G. Prasad. An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network. Fuzzy Sets and Syst., 150(2): 211-243, 2005.
    • (2005) Fuzzy Sets and Syst , vol.150 , Issue.2 , pp. 211-243
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 16
    • 34250788116 scopus 로고    scopus 로고
    • Participatory evolving fuzzy modeling
    • P. Angelov, D. Filev, and N. Kasabov, editors IEEE Press
    • E. Lima, F. Gomide, and R. Ballini. Participatory Evolving Fuzzy Modeling. In P. Angelov, D. Filev, and N. Kasabov, editors, 2006 International Symposium on Evolving Fuzzy Systems, IEEE Press, pages 36-41, 2006.
    • (2006) 2006 International Symposium on Evolving Fuzzy Systems , pp. 36-41
    • Lima, E.1    Gomide, F.2    Ballini, R.3
  • 17
    • 0003473124 scopus 로고    scopus 로고
    • Prentice Hall PTR, Prentic Hall Inc., Upper Saddle River, New Jersey 07458
    • L. Ljung. System Identification: Theory for the User. Prentice Hall PTR, Prentic Hall Inc., Upper Saddle River, New Jersey 07458, 1999.
    • (1999) System Identification: Theory for the User
    • Ljung, L.1
  • 19
    • 35448950018 scopus 로고    scopus 로고
    • Extensions of vector quantization for incremental clustering
    • E. Lughofer. Extensions of vector quantization for incremental clustering. Pattern Recognition, 41(3): 995-1011, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.3 , pp. 995-1011
    • Lughofer, E.1
  • 20
    • 55249122198 scopus 로고    scopus 로고
    • FLEXFIS: A robust incremental learning approach for evolving TS fuzzy models
    • E. Lughofer. FLEXFIS: A robust incremental learning approach for evolving TS fuzzy models. IEEE Trans. on Fuzzy Systems (sp. issue on EFS), 16(6): 1393-1410, 2008.
    • (2008) IEEE Trans. on Fuzzy Systems (sp. Issue on EFS) , vol.16 , Issue.6 , pp. 1393-1410
    • Lughofer, E.1
  • 21
    • 84871913581 scopus 로고    scopus 로고
    • Towards robust evolving fuzzy systems
    • P. Angelov, D. Filev, and N. Kasabov, editors to appear. John Wiley & Sons, New York
    • E. Lughofer. Towards robust evolving fuzzy systems. In P. Angelov, D. Filev, and N. Kasabov, editors, Evolving Intelligent Systems: Methodology and Applications, to appear. John Wiley & Sons, New York, 2009.
    • (2009) Evolving Intelligent Systems: Methodology and Applications
    • Lughofer, E.1
  • 22
    • 50249149884 scopus 로고    scopus 로고
    • Evolving singleand multi-model fuzzy classifiers with FLEXFIS-class
    • London, UK
    • E. Lughofer, P. Angelov, and X. Zhou. Evolving singleand multi-model fuzzy classifiers with FLEXFIS-Class. In Proc. FUZZ-IEEE 2007, pages 363-368, London, UK, 2007.
    • (2007) Proc. FUZZ-IEEE 2007 , pp. 363-368
    • Lughofer, E.1    Angelov, P.2    Zhou, X.3
  • 24
    • 47349117565 scopus 로고    scopus 로고
    • Tracking recurrent concept drift in streaming data using ensemble classifiers
    • (ICMLA), 2007
    • S. Ramamurthy and R. Bhatnagar. Tracking recurrent concept drift in streaming data using ensemble classifiers. In Proc. 6th Intern. Conf. on Machine Learning and Applic. (ICMLA), 2007, pages 404-409, 2007.
    • (2007) Proc. 6th Intern. Conf. on Machine Learning and Applic , pp. 404-409
    • Ramamurthy, S.1    Bhatnagar, R.2
  • 25
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. on Systems, Man and Cybernetics, 15(1): 116-132, 1985.
    • (1985) IEEE Trans. on Systems, Man and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 26
    • 26444562687 scopus 로고    scopus 로고
    • The problem of concept drift: Definitions and related work
    • Dept of Comp Science, Trinity College Dublin, Ireland
    • A. Tsymbal. The problem of concept drift: definitions and related work. Technical Report TCD-CS-2004-15, Dept of Comp Science, Trinity College Dublin, Ireland, 2004.
    • (2004) Technical Report TCD-CS-2004-15
    • Tsymbal, A.1
  • 27
    • 0026994365 scopus 로고
    • Fuzzy systems are universal approximators
    • San Diego, CA
    • L.X. Wang. Fuzzy systems are universal approximators. In Proc. 1st IEEE Conf. Fuzzy Systems, pages 1163-1169, San Diego, CA, 1992.
    • (1992) Proc. 1st IEEE Conf. Fuzzy Systems , pp. 1163-1169
    • Wang, L.X.1
  • 28
    • 0035415951 scopus 로고    scopus 로고
    • A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks
    • S. Wu, M.J. Er, and Y. Gao. A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks. IEEE Trans. on Fuzzy Systems, 9(4): 578-594, 2001.
    • (2001) IEEE Trans. on Fuzzy Systems , vol.9 , Issue.4 , pp. 578-594
    • Wu, S.1    Er, M.J.2    Gao, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.