메뉴 건너뛰기




Volumn 16, Issue 4, 2011, Pages 273-280

Traffic flow evolution effects to nitrogen dioxides predictability in large metropolitan areas

Author keywords

Modular prediction genetic algorithms; Nitrogen dioxide prediction; Temporal neural networks

Indexed keywords

CHEMICAL SENSORS; GENETIC ALGORITHMS; NITROGEN; NITROGEN OXIDES; TRAFFIC CONTROL;

EID: 79952315592     PISSN: 13619209     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trd.2011.01.001     Document Type: Article
Times cited : (7)

References (18)
  • 2
    • 57449100830 scopus 로고    scopus 로고
    • Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach
    • Cai M., Yin Y., Xie M. Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach. Transportation Research Part D 2009, 14:32-41.
    • (2009) Transportation Research Part D , vol.14 , pp. 32-41
    • Cai, M.1    Yin, Y.2    Xie, M.3
  • 3
    • 16244377739 scopus 로고    scopus 로고
    • 2 and comparison with estimates derived from ambient measurements
    • 2 and comparison with estimates derived from ambient measurements. Atmospheric Environment 2005, 39:2049-2059.
    • (2005) Atmospheric Environment , vol.39 , pp. 2049-2059
    • Carslaw, D.C.1    Beevers, S.D.2
  • 4
    • 84986792205 scopus 로고
    • An introduction to long-memory time series models and fractional differencing
    • Granger C.W.J., Joyeux R. An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis 1980, 1:15-29.
    • (1980) Journal of Time Series Analysis , vol.1 , pp. 15-29
    • Granger, C.W.J.1    Joyeux, R.2
  • 5
    • 67349277727 scopus 로고    scopus 로고
    • Memory properties and fractional integration in transportation time-series
    • Karlaftis M.G., Vlahogianni E.I. Memory properties and fractional integration in transportation time-series. Transportation Research Part C 2009, 17:444-453.
    • (2009) Transportation Research Part C , vol.17 , pp. 444-453
    • Karlaftis, M.G.1    Vlahogianni, E.I.2
  • 6
    • 34247480179 scopus 로고
    • Testing the null hypothesis of stationarity against the alternative of a unit root
    • Kwiatkowski D., Phillips P.C.B., Schmidt P., Shin Y. Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics 1992, 54:159-178.
    • (1992) Journal of Econometrics , vol.54 , pp. 159-178
    • Kwiatkowski, D.1    Phillips, P.C.B.2    Schmidt, P.3    Shin, Y.4
  • 7
    • 21444437806 scopus 로고    scopus 로고
    • Numerical distribution functions for unit root and cointegration tests
    • MacKinnon J.G. Numerical distribution functions for unit root and cointegration tests. Journal of Applied Econometrics 1996, 11:601-618.
    • (1996) Journal of Applied Econometrics , vol.11 , pp. 601-618
    • MacKinnon, J.G.1
  • 8
    • 0018023758 scopus 로고
    • Simulation procedures for Box-Jenkins models
    • McLeod A.I., Hipel K.W. Simulation procedures for Box-Jenkins models. Water Resources Research 1978, 14:969-980.
    • (1978) Water Resources Research , vol.14 , pp. 969-980
    • McLeod, A.I.1    Hipel, K.W.2
  • 9
    • 0030301575 scopus 로고    scopus 로고
    • Forecasting carbon monoxide concentration near a sheltered intersections using video traffic surveillance and neural networks
    • Moseholm L., Silva J., Larson T.C. Forecasting carbon monoxide concentration near a sheltered intersections using video traffic surveillance and neural networks. Transportation Research Part D 1996, 1:15-28.
    • (1996) Transportation Research Part D , vol.1 , pp. 15-28
    • Moseholm, L.1    Silva, J.2    Larson, T.C.3
  • 10
    • 27844608945 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions
    • Nagendra S.M.S., Khare M. Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions. Ecological Modelling 2006, 190:99-115.
    • (2006) Ecological Modelling , vol.190 , pp. 99-115
    • Nagendra, S.M.S.1    Khare, M.2
  • 14
    • 33750338259 scopus 로고    scopus 로고
    • Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume. Transportation Research Part C 2006, 14:351-367.
    • (2006) Transportation Research Part C , vol.14 , pp. 351-367
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 16
    • 36549001592 scopus 로고    scopus 로고
    • Car ownership level for a sustainability urban environment
    • Yang Z., Chen G., Yu B. Car ownership level for a sustainability urban environment. Transportation Research Part D 2008, 13:10-18.
    • (2008) Transportation Research Part D , vol.13 , pp. 10-18
    • Yang, Z.1    Chen, G.2    Yu, B.3
  • 17
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X. Evolving artificial neural networks. Proceedings of the IEEE 1998, 87:1147-1423.
    • (1998) Proceedings of the IEEE , vol.87 , pp. 1147-1423
    • Yao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.