메뉴 건너뛰기




Volumn 25, Issue 4, 2011, Pages 1143-1152

Artificial Neural Network (ANN) Based Modeling for Karstic Groundwater Level Simulation

Author keywords

Artificial neural networks; Hydraulic head simulation; Karstic aquifer

Indexed keywords

ARTESIAN; ARTIFICIAL NEURAL NETWORK; BLACK BOX APPROACH; CALIBRATION PROCESS; COMPLEX MODEL; CORRELATION ANALYSIS; EDWARDS AQUIFER; EMPIRICAL MODEL; EXPLICIT KNOWLEDGE; FIELD DATA; GROUND WATER LEVEL; GROUNDWATER MANAGEMENT; GROUNDWATER MODELS; GROUNDWATER SYSTEM; HIDDEN LAYERS; HYDRAULIC HEAD SIMULATION; HYDRAULIC HEADS; HYDROGEOLOGICAL; HYDROLOGICAL PARAMETERS; INPUT PARAMETER; KARSTIC; KARSTIC AQUIFER; MEASURED DATA; MULTI LAYER PERCEPTRON; OBSERVATION WELLS; PUMPING RATE; TESTING DATA; TEXAS , USA; TIME LAG; TRAINING PROCEDURES; WELL LOCATION; WORK FOCUS;

EID: 79952075425     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-010-9628-6     Document Type: Article
Times cited : (81)

References (19)
  • 1
    • 22344432020 scopus 로고    scopus 로고
    • Optimal management of coastal aquifers using linked simulation optimization approach
    • Bhattacharjya RK, Datta B (2005) Optimal management of coastal aquifers using linked simulation optimization approach. Water Resour Manage 19: 295-320.
    • (2005) Water Resour Manage , vol.19 , pp. 295-320
    • Bhattacharjya, R.K.1    Datta, B.2
  • 5
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P, Anctil F, Bobee B (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J Hydrol 230: 244-257.
    • (2000) J Hydrol , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 6
    • 37549038684 scopus 로고    scopus 로고
    • Neural networks to simulate regional ground water levels affected by human activities
    • Feng S, Kang S, Huo Z, Chen S, Mao X (2008) Neural networks to simulate regional ground water levels affected by human activities. Ground Water 46: 80-90.
    • (2008) Ground Water , vol.46 , pp. 80-90
    • Feng, S.1    Kang, S.2    Huo, Z.3    Chen, S.4    Mao, X.5
  • 7
    • 31044452344 scopus 로고    scopus 로고
    • Using neural networks for parameter estimation in ground water
    • Garcia LA, Shigidi A (2006) Using neural networks for parameter estimation in ground water. J Hydrol 318: 215-231.
    • (2006) J Hydrol , vol.318 , pp. 215-231
    • Garcia, L.A.1    Shigidi, A.2
  • 10
    • 0038010337 scopus 로고    scopus 로고
    • A nonlinear rainfall-runoff model using neural network technique: Example in fractured porous media
    • Lallahem S, Mania J (2003) A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media. Math Comput Model 37: 1047-1061.
    • (2003) Math Comput Model , vol.37 , pp. 1047-1061
    • Lallahem, S.1    Mania, J.2
  • 11
    • 19744366167 scopus 로고    scopus 로고
    • On the use of neural networks to evaluate groundwater levels in fractured media
    • Lallahem S, Mania J, Hani A, Najjar Y (2005) On the use of neural networks to evaluate groundwater levels in fractured media. J Hydrol 307: 92-111.
    • (2005) J Hydrol , vol.307 , pp. 92-111
    • Lallahem, S.1    Mania, J.2    Hani, A.3    Najjar, Y.4
  • 12
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15: 101-124.
    • (2000) Environ Model Softw , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 13
    • 77953325250 scopus 로고    scopus 로고
    • Artificial neural network modeling for groundwater level forecasting in a river island of Eastern India
    • Online first doi: 10. 1007/s11269-009-9527-x
    • Mohanty S, Jha MK, Kumar A, Sudheer KP (2009) Artificial neural network modeling for groundwater level forecasting in a river island of Eastern India. Water Resour Manage. Online first doi: 10. 1007/s11269-009-9527-x.
    • (2009) Water Resour Manage
    • Mohanty, S.1    Jha, M.K.2    Kumar, A.3    Sudheer, K.P.4
  • 14
    • 32044458602 scopus 로고    scopus 로고
    • Groundwater level forecasting in a shallow aquifer using artificial neural network approach
    • Nayak P, Rao Y, Sudheer K (2006) Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resour Manage 20: 77-90.
    • (2006) Water Resour Manage , vol.20 , pp. 77-90
    • Nayak, P.1    Rao, Y.2    Sudheer, K.3
  • 15
    • 50449094792 scopus 로고    scopus 로고
    • Artificial neural networks as an alternative approach to groundwater numerical modelling and environmental design
    • Nikolos IK, Stergiadi M, Papadopoulou MP, Karatzas GP (2008) Artificial neural networks as an alternative approach to groundwater numerical modelling and environmental design. Hydrol Process 22: 3337-3348.
    • (2008) Hydrol Process , vol.22 , pp. 3337-3348
    • Nikolos, I.K.1    Stergiadi, M.2    Papadopoulou, M.P.3    Karatzas, G.P.4
  • 16
    • 77955056109 scopus 로고    scopus 로고
    • Simulation-optimization modeling of conjunctive use of surface water and groundwater
    • doi:10.1007/s11269-009-9533-z
    • Safavi HR, Darzi F, Mariño MA (2009) Simulation-optimization modeling of conjunctive use of surface water and groundwater. Water Resour Manage. Online first doi: 10. 1007/s11269-009-9533-z.
    • (2009) Water Resour Manage. Online First
    • Safavi, H.R.1    Darzi, F.2    Mariño, M.A.3
  • 17
    • 0038616081 scopus 로고    scopus 로고
    • Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA
    • Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J Hydrol 276: 137-158.
    • (2003) J Hydrol , vol.276 , pp. 137-158
    • Scanlon, B.R.1    Mace, R.E.2    Barrett, M.E.3    Smith, B.4
  • 19
    • 70349251374 scopus 로고    scopus 로고
    • Optimal selection of artificial neural network parameters for the prediction of a karstic aquifer's response
    • Trichakis IC, Nikolos IK, Karatzas GP (2009) Optimal selection of artificial neural network parameters for the prediction of a karstic aquifer's response. Hydrol Process 23: 2956-2969.
    • (2009) Hydrol Process , vol.23 , pp. 2956-2969
    • Trichakis, I.C.1    Nikolos, I.K.2    Karatzas, G.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.