메뉴 건너뛰기




Volumn , Issue , 2010, Pages 482-487

A wrapper approach based on clustering for sensors selection of industrial monitoring systems

Author keywords

Fault detection; Industrial processes; Monitoring; Sensor selection; Wrapper

Indexed keywords

CLASS LABELS; DATA SETS; ESTERIFICATION REACTIONS; FEATURE SELECTION; FUNCTIONAL STATE; HIGH DIMENSIONAL DATA; HIGH DIMENSIONALITY; INDUSTRIAL MONITORING SYSTEMS; INDUSTRIAL PROCESSS; NONLINEAR BEHAVIOR; OPEN ENVIRONMENT; PRODUCT QUALITY; SENSOR SELECTION; STRUCTURAL MODELS; UNKNOWN PARAMETERS; WRAPPER; WRAPPER APPROACH;

EID: 79952075168     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BWCCA.2010.118     Document Type: Conference Paper
Times cited : (7)

References (27)
  • 2
    • 0020338469 scopus 로고
    • The process of classification and learning the meaning of linguistic descriptors of concepts
    • J. Aguilar-Martin and R. L. de Mántaras. The process of classification and learning the meaning of linguistic descriptors of concepts. Approximate Reasoning in Decision Analysis, -:165-175, 1982.
    • (1982) Approximate Reasoning in Decision Analysis , pp. 165-175
    • Aguilar-Martin, J.1    De Mántaras, R.L.2
  • 4
    • 0035885219 scopus 로고    scopus 로고
    • Fault diagnosis of multivariate systems using pattern recognition and multisensor data analysis technique
    • DOI 10.1016/S0098-1354(01)00701-3, PII S0098135401007013
    • F. Akbaryan and P. R. Bishnoi. Fault diagnosis of multivariate systems using pattern recognition and multisensor data analysis technique. Computers & Chemical Engineering, 25(9-10):1313-1339, 2001. (Pubitemid 32802427)
    • (2001) Computers and Chemical Engineering , vol.25 , Issue.9-10 , pp. 1313-1339
    • Akbaryan, F.1    Bishnoi, P.R.2
  • 9
    • 0025798330 scopus 로고
    • A distance-based attribute selection measure for decision tree induction
    • R. L. De Mántaras. A distance-based attribute selection measure for decision tree induction. Mach. Learn., 6(1):81-92, 1991.
    • (1991) Mach. Learn. , vol.6 , Issue.1 , pp. 81-92
    • De Mántaras, R.L.1
  • 10
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • J. G. Dy and C. E. Brodley. Feature selection for unsupervised learning. J. Mach. Learn. Res., 5:845-889, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 11
    • 0042623445 scopus 로고    scopus 로고
    • Sensor selection for model-based real-time optimization: Relating design of experiments and design cost
    • L. M. Fraleigh, M. Guay, and J. F. Forbes. Sensor selection for model-based real-time optimization: relating design of experiments and design cost. Journal of Process Control, 13(7):667-678, 2003.
    • (2003) Journal of Process Control , vol.13 , Issue.7 , pp. 667-678
    • Fraleigh, L.M.1    Guay, M.2    Forbes, J.F.3
  • 12
    • 47349132601 scopus 로고    scopus 로고
    • Selection of clusters number and features subset during a two-levels clustering task
    • S. Guérif and Y. Bennani. Selection of clusters number and features subset during a two-levels clustering task. In Artificial Intelligence and Soft Computing, pages 28-33, 2006.
    • (2006) Artificial Intelligence and Soft Computing , pp. 28-33
    • Guérif, S.1    Bennani, Y.2
  • 13
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff. An introduction to variable and feature selection. J. Mach. Learn. Res., 3:1157-1182, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 17
    • 33646941008 scopus 로고    scopus 로고
    • Process situation assessment: From a fuzzy partition to a finite state machine
    • DOI 10.1016/j.engappai.2005.12.012, PII S0952197606000194
    • T. Kempowsky, A. Subias, and J. Aguilar-Martin. Process situation assessment: From a fuzzy partition to a finite state machine. Engineering Applications of Artificial Intelligence, 19(5):461-477, 2006. (Pubitemid 43795037)
    • (2006) Engineering Applications of Artificial Intelligence , vol.19 , Issue.5 , pp. 461-477
    • Kempowsky, T.1    Subias, A.2    Aguilar-Martin, J.3
  • 19
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi and G. H. John. Wrappers for feature subset selection. Artif. Intell., 97(1-2):273-324, 1997. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 21
    • 0036058048 scopus 로고    scopus 로고
    • A methodology for optimal sensor selection in chemical processes
    • May 8-10
    • K. R. Muske and C. Georgakis. A methodology for optimal sensor selection in chemical processes. In Proc. American Control Conference the 2002, volume 5, pages 4274-4278, May 8-10, 2002.
    • (2002) Proc. American Control Conference the 2002 , vol.5 , pp. 4274-4278
    • Muske, K.R.1    Georgakis, C.2
  • 22
    • 84877020777 scopus 로고    scopus 로고
    • Information theoretic measures for clusterings comparison: Is a correction for chance necessary?
    • X. V. Nguyen, J. Epps, and J. Bailey. Information theoretic measures for clusterings comparison: is a correction for chance necessary? In ICML, page 135, 2009.
    • (2009) ICML , pp. 135
    • Nguyen, X.V.1    Epps, J.2    Bailey, J.3
  • 26
    • 42949143535 scopus 로고    scopus 로고
    • Fault detection and identification with a new feature selection based on mutual information
    • DOI 10.1016/j.jprocont.2007.08.003, PII S0959152407001230
    • S. Verron, T. Tiplica, and A. Kobi. Fault detection and identification with a new feature selection based on mutual information. Journal of Process Control, 18(5):479-490, 2008. (Pubitemid 351608294)
    • (2008) Journal of Process Control , vol.18 , Issue.5 , pp. 479-490
    • Verron, S.1    Tiplica, T.2    Kobi, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.