메뉴 건너뛰기




Volumn 3173, Issue , 2004, Pages 512-517

RBF kernel based support vector machine with universal approximation and its application

Author keywords

[No Author keywords available]

Indexed keywords

FUNCTIONS; NOISE POLLUTION; RADIAL BASIS FUNCTION NETWORKS;

EID: 35048829777     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-28647-9_85     Document Type: Article
Times cited : (66)

References (4)
  • 2
    • 0033684572 scopus 로고    scopus 로고
    • Sparse Approximation Using Least Squares Support Vector Machines
    • Geneva, Switzerland May
    • Johan A.K. Suykens: Sparse Approximation Using Least Squares Support Vector Machines. IEEE Int. Symposium on Circuit and Systems. Geneva, Switzerland (2000) pp.757-760, May.
    • (2000) IEEE Int. Symposium on Circuit and Systems , pp. 757-760
    • Suykens, J.A.K.1
  • 3
    • 33644962519 scopus 로고    scopus 로고
    • Soft Sensor Modeling Based on Support Vector Machine
    • Feng Rui: Soft Sensor Modeling Based on Support Vector Machine. Information and Control. (2002) vol.31, no.6, pp.567-571.
    • (2002) Information and Control. , vol.31 , Issue.6 , pp. 567-571
    • Rui, F.1
  • 4
    • 1342337909 scopus 로고    scopus 로고
    • A Stochastic Fuzzy Neural Network with Universal Approximation and Its Application
    • Beijing: Tsinghua University Press & Springer
    • Wang J P, Jing Z L: A Stochastic Fuzzy Neural Network with Universal Approximation and Its Application. Proc. of Int. Conf. On Fuzzy Information Processing Theories and Applications. Beijing: Tsinghua University Press & Springer, (2003) pp. 497-502.
    • (2003) Proc. of Int. Conf. on Fuzzy Information Processing Theories and Applications , pp. 497-502
    • Wang, J.P.1    Jing, Z.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.