메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1613-1617

Error exponents for composite hypothesis testing of Markov forest distributions

Author keywords

Least favorable distribution; Markov forests; Neyman Pearson formulation; Worst case error exponent

Indexed keywords

BINARY HYPOTHESIS TESTING; CLOSED FORM; COMPOSITE HYPOTHESIS TESTING; EDGE WEIGHTS; ERROR EXPONENT; FOREST DISTRIBUTION; LEAST FAVORABLE DISTRIBUTION; MARKOV FORESTS; MUTUAL INFORMATIONS; NEYMAN-PEARSON; NULL HYPOTHESIS; SPANNING TREE; SUFFICIENT CONDITIONS; WORST-CASE ERRORS;

EID: 77955701505     PISSN: 21578103     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISIT.2010.5513399     Document Type: Conference Paper
Times cited : (10)

References (12)
  • 2
    • 0001613029 scopus 로고
    • Asymptotically optimal tests for multinomial distributions
    • W. Hoeffding, "Asymptotically Optimal Tests for Multinomial Distributions," Ann. of Math. Stats., vol. 36, no. 2, pp. 369-401, 1965.
    • (1965) Ann. of Math. Stats. , vol.36 , Issue.2 , pp. 369-401
    • Hoeffding, W.1
  • 3
    • 0026117687 scopus 로고
    • On universal hypotheses testing via large deviations
    • O. Zeitouni and M. Gutman, "On Universal Hypotheses Testing via Large Deviations," IEEE Trans. on Info. Th., vol. 37, no. 2, pp. 285-290, 1991.
    • (1991) IEEE Trans. on Info. Th. , vol.37 , Issue.2 , pp. 285-290
    • Zeitouni, O.1    Gutman, M.2
  • 4
    • 0026913009 scopus 로고
    • When is the generalized likelihood ratio test optimal?
    • O. Zeitouni, J. Ziv, and N. Merhav, "When is the Generalized Likelihood Ratio Test Optimal?" IEEE Trans. on Info. Th., vol. 38, no. 5, pp. 1597-1602, 1992.
    • (1992) IEEE Trans. on Info. Th. , vol.38 , Issue.5 , pp. 1597-1602
    • Zeitouni, O.1    Ziv, J.2    Merhav, N.3
  • 5
    • 70449514560 scopus 로고    scopus 로고
    • A large-deviation analysis for the maximum likelihood learning of Markov tree structures
    • submitted to Arxiv 0905.0940, May
    • V. Y. F. Tan, A. Anandkumar, L. Tong, and A. S. Willsky, "A Large-Deviation Analysis for the Maximum Likelihood Learning of Markov Tree Structures," submitted to IEEE Trans. on Info. Th., Arxiv 0905.0940, May 2009.
    • (2009) IEEE Trans. on Info. Th.
    • Tan, V.Y.F.1    Anandkumar, A.2    Tong, L.3    Willsky, A.S.4
  • 6
    • 77951198948 scopus 로고    scopus 로고
    • Learning Gaussian tree models: Analysis of error exponents and extremal structures
    • accepted to Arxiv 0909.5216, Jan
    • V. Y. F. Tan, A. Anandkumar, and A. S. Willsky, "Learning Gaussian Tree Models: Analysis of Error Exponents and Extremal Structures," accepted to IEEE Trans. on Sig. Proc., Arxiv 0909.5216, Jan 2010.
    • (2010) IEEE Trans. on Sig. Proc.
    • Tan, V.Y.F.1    Anandkumar, A.2    Willsky, A.S.3
  • 7
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • May
    • C. K. Chow and C. N. Liu, "Approximating discrete probability distributions with dependence trees." IEEE Trans. on Info. Th., vol. 14, no. 3, pp. 462-467, May 1968.
    • (1968) IEEE Trans. on Info. Th. , vol.14 , Issue.3 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 9
    • 70449467701 scopus 로고    scopus 로고
    • Detection error exponent for spatially dependent samples in random networks
    • Seoul, S. Korea, July
    • A. Anandkumar, L. Tong, and A. S. Willsky, "Detection Error Exponent for Spatially Dependent Samples in Random Networks," in Intl. Symp. Info. Th., Seoul, S. Korea, July 2009.
    • (2009) Intl. Symp. Info. Th.
    • Anandkumar, A.1    Tong, L.2    Willsky, A.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.