메뉴 건너뛰기




Volumn 25, Issue 2, 2011, Pages 51-58

On estimating model complexity and prediction errors in multivariate calibration: Generalized resampling by random sample weighting (RSW)

Author keywords

Bootstrapping; Cross validation; PLS model complexity; Random sample weighting; Randomization test

Indexed keywords

MEAN SQUARE ERROR; MONTE CARLO METHODS; RANDOM ERRORS; RANDOM PROCESSES; SAMPLING;

EID: 79951861339     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.1323     Document Type: Article
Times cited : (7)

References (39)
  • 1
    • 0003000612 scopus 로고
    • Research Papers in Statistics
    • David F (ed.). Wiley: New York, USA.
    • Wold H. Research Papers in Statistics, David F (ed.). Wiley: New York, USA, 1966; 411-444.
    • (1966) , pp. 411-444
    • Wold, H.1
  • 2
    • 0033662470 scopus 로고    scopus 로고
    • Choosing the number of factors in partial least squares regression: estimating and minimizing the mean squared error of prediction
    • Denham MC. Choosing the number of factors in partial least squares regression: estimating and minimizing the mean squared error of prediction. J. Chemom. 2000; 14: 351-361.
    • (2000) J. Chemom. , vol.14 , pp. 351-361
    • Denham, M.C.1
  • 3
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. J. Roy. Stat. Soc. B 1974; 36: 111-133.
    • (1974) J. Roy. Stat. Soc. B , vol.36 , pp. 111-133
    • Stone, M.1
  • 4
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of components in factor and principal components models
    • Wold S. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 1978; 20: 397-405.
    • (1978) Technometrics , vol.20 , pp. 397-405
    • Wold, S.1
  • 5
    • 0002656714 scopus 로고
    • Selection of optimal regression models via cross-validation
    • Osten DW. Selection of optimal regression models via cross-validation. J. Chemom. 1988; 2: 39-48.
    • (1988) J. Chemom. , vol.2 , pp. 39-48
    • Osten, D.W.1
  • 6
    • 0025517044 scopus 로고
    • Alternatives to cross-validatory estimation of the number of factors in multivariate calibration
    • Lorber A, Kowalski BR. Alternatives to cross-validatory estimation of the number of factors in multivariate calibration. Appl. Spectrosc. 1990; 44: 1464-1470.
    • (1990) Appl. Spectrosc. , vol.44 , pp. 1464-1470
    • Lorber, A.1    Kowalski, B.R.2
  • 7
    • 0000068904 scopus 로고
    • A test of significance for partial least squares regression
    • Wakeling IN, Morris JJ. A test of significance for partial least squares regression. J. Chemom. 1993; 7: 291-304.
    • (1993) J. Chemom. , vol.7 , pp. 291-304
    • Wakeling, I.N.1    Morris, J.J.2
  • 8
    • 0027943145 scopus 로고
    • Comparing the predictive accuracy of models using a simple randomization test
    • van der Voet H. Comparing the predictive accuracy of models using a simple randomization test. Chemom. Intell. Lab. Syst. 1994; 25: 313-323.
    • (1994) Chemom. Intell. Lab. Syst. , vol.25 , pp. 313-323
    • van der Voet, H.1
  • 10
  • 11
    • 0032517815 scopus 로고    scopus 로고
    • Validation and verification of regression in small data sets
    • Martens HA, Dardenne P. Validation and verification of regression in small data sets. Chemom. Intell. Lab. Syst. 1998; 44: 99-121.
    • (1998) Chemom. Intell. Lab. Syst. , vol.44 , pp. 99-121
    • Martens, H.A.1    Dardenne, P.2
  • 12
    • 0033653073 scopus 로고    scopus 로고
    • Choice of latent explanatory variables: a multiobjective optimization approach
    • Liu D, Shah SL, Grant Fisher D. Choice of latent explanatory variables: a multiobjective optimization approach. J. Chemom. 2000; 14: 79-92.
    • (2000) J. Chemom. , vol.14 , pp. 79-92
    • Liu, D.1    Shah, S.L.2    Grant Fisher, D.3
  • 13
    • 0035967263 scopus 로고    scopus 로고
    • Critical evaluation of a significance test for partial least squares regression
    • Faber NM. Critical evaluation of a significance test for partial least squares regression. Anal. Chim. Acta 2001; 432: 235-240.
    • (2001) Anal. Chim. Acta , vol.432 , pp. 235-240
    • Faber, N.M.1
  • 14
    • 0034889705 scopus 로고    scopus 로고
    • The PLS multivariate regression model: testing the significance of successive PLS components
    • Lazraq A, Cléroux R. The PLS multivariate regression model: testing the significance of successive PLS components. J.Chemom. 2001; 15: 523-536.
    • (2001) J.Chemom. , vol.15 , pp. 523-536
    • Lazraq, A.1    Cléroux, R.2
  • 15
  • 17
    • 0037185468 scopus 로고    scopus 로고
    • Graphical diagnostics for regression model determinations with consideration of the bias/variance trade-off
    • Green RL, Kalivas JH. Graphical diagnostics for regression model determinations with consideration of the bias/variance trade-off. Chemom. Intell. Lab. Syst. 2002; 60: 173-188.
    • (2002) Chemom. Intell. Lab. Syst. , vol.60 , pp. 173-188
    • Green, R.L.1    Kalivas, J.H.2
  • 18
    • 0037191154 scopus 로고    scopus 로고
    • Model selection for partial least squares regression
    • Li B, Morris J, Martin EB. Model selection for partial least squares regression. Chemom. Intell. Lab. Syst. 2002; 64: 79-89.
    • (2002) Chemom. Intell. Lab. Syst. , vol.64 , pp. 79-89
    • Li, B.1    Morris, J.2    Martin, E.B.3
  • 19
    • 1842420480 scopus 로고    scopus 로고
    • Non-parametric statistical methods for multivariate calibration model selection and comparison
    • Thomas EV. Non-parametric statistical methods for multivariate calibration model selection and comparison. J. Chemom. 2003; 17: 653-659.
    • (2003) J. Chemom. , vol.17 , pp. 653-659
    • Thomas, E.V.1
  • 20
    • 0042280342 scopus 로고    scopus 로고
    • An evaluation of the PoLiSh smoothed regression and the Monte Carlo cross-validation for the determination of the complexity of a PLS model
    • Gourvénec S, Fernández Pierna JA, Massart DL, Rutledge DN. An evaluation of the PoLiSh smoothed regression and the Monte Carlo cross-validation for the determination of the complexity of a PLS model. Chemom. Intell. Lab. Syst. 2003; 68: 41-51.
    • (2003) Chemom. Intell. Lab. Syst. , vol.68 , pp. 41-51
    • Gourvénec, S.1    Fernández Pierna, J.A.2    Massart, D.L.3    Rutledge, D.N.4
  • 21
    • 9444271627 scopus 로고    scopus 로고
    • Effective rank for multivariate calibration methods
    • Seipel H, Kalivas JH. Effective rank for multivariate calibration methods. J. Chemom. 2004; 18: 306-311.
    • (2004) J. Chemom. , vol.18 , pp. 306-311
    • Seipel, H.1    Kalivas, J.H.2
  • 22
    • 3242726813 scopus 로고    scopus 로고
    • Monte Carlo cross-validation for selecting a model and estimating the prediction error in multivariate calibration
    • Xu QS, Liang YZ, Du YP. Monte Carlo cross-validation for selecting a model and estimating the prediction error in multivariate calibration. J. Chemom. 2004; 18: 112-120.
    • (2004) J. Chemom. , vol.18 , pp. 112-120
    • Xu, Q.S.1    Liang, Y.Z.2    Du, Y.P.3
  • 24
    • 34250813108 scopus 로고    scopus 로고
    • How to avoid over-fitting in multivariate calibration-the conventional validation approach and an alternative
    • Faber NM, Rajkó R. How to avoid over-fitting in multivariate calibration-the conventional validation approach and an alternative. Anal. Chim. Acta 2007; 595: 98-106.
    • (2007) Anal. Chim. Acta , vol.595 , pp. 98-106
    • Faber, N.M.1    Rajkó, R.2
  • 26
    • 0003421415 scopus 로고
    • The Jackknife, the Bootstrap, and Other Resampling Plans
    • SIAM: Philadelphia, USA,
    • Efron B. The Jackknife, the Bootstrap, and Other Resampling Plans. SIAM: Philadelphia, USA, 1982.
    • (1982)
    • Efron, B.1
  • 27
    • 0000302531 scopus 로고    scopus 로고
    • Bootstrapping principal component regression models
    • Wehrens R, van der Linden WE. Bootstrapping principal component regression models. J. Chemom. 1997; 11: 157-171.
    • (1997) J. Chemom. , vol.11 , pp. 157-171
    • Wehrens, R.1    van der Linden, W.E.2
  • 29
    • 0042829057 scopus 로고    scopus 로고
    • Bootstrap-based $\hat {Q}-{kh}^{2} $ for the selection of components and variables in PLS regression
    • Amato S, Vinzi VE. Bootstrap-based $\hat {Q}-{kh}^{2} $ for the selection of components and variables in PLS regression. Chemom. Intell. Lab. Syst. 2003; 68: 5-16.
    • (2003) Chemom. Intell. Lab. Syst. , vol.68 , pp. 5-16
    • Amato, S.1    Vinzi, V.E.2
  • 30
    • 34548638258 scopus 로고    scopus 로고
    • Bootstrap-based tolerance intervals for application to method validation
    • Rebafka T, Clémençon S, Feinberg M. Bootstrap-based tolerance intervals for application to method validation. Chemom. Intell. Lab. Syst. 2007; 89: 69-81.
    • (2007) Chemom. Intell. Lab. Syst. , vol.89 , pp. 69-81
    • Rebafka, T.1    Clémençon, S.2    Feinberg, M.3
  • 31
    • 1542703385 scopus 로고
    • Leverage and influence measures related to principal component regression
    • Næs T. Leverage and influence measures related to principal component regression. Chemom. Intell. Lab. Syst. 1989; 5: 155-168.
    • (1989) Chemom. Intell. Lab. Syst. , vol.5 , pp. 155-168
    • Næs, T.1
  • 32
    • 0000676992 scopus 로고    scopus 로고
    • Evaluation of alternative spectral feature extraction methods of textural images for multivariate modeling
    • Indahl UG, Næs T. Evaluation of alternative spectral feature extraction methods of textural images for multivariate modeling. J. Chemom. 1998; 12: 261-278.
    • (1998) J. Chemom. , vol.12 , pp. 261-278
    • Indahl, U.G.1    Næs, T.2
  • 33
    • 33646102895 scopus 로고    scopus 로고
    • Ascertainment of the number of samples in the validation set in Monte Carlo cross validation and the selection of model dimension with Monte Carlo cross validation
    • Du YP, Kasemsumran S, Maruo K, Nakagawa T, Ozaki Y. Ascertainment of the number of samples in the validation set in Monte Carlo cross validation and the selection of model dimension with Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 2006; 82: 83-89.
    • (2006) Chemom. Intell. Lab. Syst. , vol.82 , pp. 83-89
    • Du, Y.P.1    Kasemsumran, S.2    Maruo, K.3    Nakagawa, T.4    Ozaki, Y.5
  • 35
    • 0000203752 scopus 로고
    • Optimal minimal neural interpretation of spectra
    • Borggaard C, Thodberg HH. Optimal minimal neural interpretation of spectra. Anal. Chem. 1992; 64: 545-551.
    • (1992) Anal. Chem. , vol.64 , pp. 545-551
    • Borggaard, C.1    Thodberg, H.H.2
  • 36
    • 85153983893 scopus 로고    scopus 로고
    • Eigenvector Research, Inc. [1 June 2009].
    • Eigenvector Research, Inc. [1 June 2009].
  • 38
    • 0024034712 scopus 로고
    • Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information
    • Haaland DM, Thomas EV. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem. 1988; 60: 1193-1202.
    • (1988) Anal. Chem. , vol.60 , pp. 1193-1202
    • Haaland, D.M.1    Thomas, E.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.