-
1
-
-
0003000612
-
Research Papers in Statistics
-
David F (ed.). Wiley: New York, USA.
-
Wold H. Research Papers in Statistics, David F (ed.). Wiley: New York, USA, 1966; 411-444.
-
(1966)
, pp. 411-444
-
-
Wold, H.1
-
2
-
-
0033662470
-
Choosing the number of factors in partial least squares regression: estimating and minimizing the mean squared error of prediction
-
Denham MC. Choosing the number of factors in partial least squares regression: estimating and minimizing the mean squared error of prediction. J. Chemom. 2000; 14: 351-361.
-
(2000)
J. Chemom.
, vol.14
, pp. 351-361
-
-
Denham, M.C.1
-
3
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions
-
Stone M. Cross-validatory choice and assessment of statistical predictions. J. Roy. Stat. Soc. B 1974; 36: 111-133.
-
(1974)
J. Roy. Stat. Soc. B
, vol.36
, pp. 111-133
-
-
Stone, M.1
-
4
-
-
84951601886
-
Cross-validatory estimation of the number of components in factor and principal components models
-
Wold S. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 1978; 20: 397-405.
-
(1978)
Technometrics
, vol.20
, pp. 397-405
-
-
Wold, S.1
-
5
-
-
0002656714
-
Selection of optimal regression models via cross-validation
-
Osten DW. Selection of optimal regression models via cross-validation. J. Chemom. 1988; 2: 39-48.
-
(1988)
J. Chemom.
, vol.2
, pp. 39-48
-
-
Osten, D.W.1
-
6
-
-
0025517044
-
Alternatives to cross-validatory estimation of the number of factors in multivariate calibration
-
Lorber A, Kowalski BR. Alternatives to cross-validatory estimation of the number of factors in multivariate calibration. Appl. Spectrosc. 1990; 44: 1464-1470.
-
(1990)
Appl. Spectrosc.
, vol.44
, pp. 1464-1470
-
-
Lorber, A.1
Kowalski, B.R.2
-
7
-
-
0000068904
-
A test of significance for partial least squares regression
-
Wakeling IN, Morris JJ. A test of significance for partial least squares regression. J. Chemom. 1993; 7: 291-304.
-
(1993)
J. Chemom.
, vol.7
, pp. 291-304
-
-
Wakeling, I.N.1
Morris, J.J.2
-
8
-
-
0027943145
-
Comparing the predictive accuracy of models using a simple randomization test
-
van der Voet H. Comparing the predictive accuracy of models using a simple randomization test. Chemom. Intell. Lab. Syst. 1994; 25: 313-323.
-
(1994)
Chemom. Intell. Lab. Syst.
, vol.25
, pp. 313-323
-
-
van der Voet, H.1
-
11
-
-
0032517815
-
Validation and verification of regression in small data sets
-
Martens HA, Dardenne P. Validation and verification of regression in small data sets. Chemom. Intell. Lab. Syst. 1998; 44: 99-121.
-
(1998)
Chemom. Intell. Lab. Syst.
, vol.44
, pp. 99-121
-
-
Martens, H.A.1
Dardenne, P.2
-
12
-
-
0033653073
-
Choice of latent explanatory variables: a multiobjective optimization approach
-
Liu D, Shah SL, Grant Fisher D. Choice of latent explanatory variables: a multiobjective optimization approach. J. Chemom. 2000; 14: 79-92.
-
(2000)
J. Chemom.
, vol.14
, pp. 79-92
-
-
Liu, D.1
Shah, S.L.2
Grant Fisher, D.3
-
13
-
-
0035967263
-
Critical evaluation of a significance test for partial least squares regression
-
Faber NM. Critical evaluation of a significance test for partial least squares regression. Anal. Chim. Acta 2001; 432: 235-240.
-
(2001)
Anal. Chim. Acta
, vol.432
, pp. 235-240
-
-
Faber, N.M.1
-
14
-
-
0034889705
-
The PLS multivariate regression model: testing the significance of successive PLS components
-
Lazraq A, Cléroux R. The PLS multivariate regression model: testing the significance of successive PLS components. J.Chemom. 2001; 15: 523-536.
-
(2001)
J.Chemom.
, vol.15
, pp. 523-536
-
-
Lazraq, A.1
Cléroux, R.2
-
17
-
-
0037185468
-
Graphical diagnostics for regression model determinations with consideration of the bias/variance trade-off
-
Green RL, Kalivas JH. Graphical diagnostics for regression model determinations with consideration of the bias/variance trade-off. Chemom. Intell. Lab. Syst. 2002; 60: 173-188.
-
(2002)
Chemom. Intell. Lab. Syst.
, vol.60
, pp. 173-188
-
-
Green, R.L.1
Kalivas, J.H.2
-
19
-
-
1842420480
-
Non-parametric statistical methods for multivariate calibration model selection and comparison
-
Thomas EV. Non-parametric statistical methods for multivariate calibration model selection and comparison. J. Chemom. 2003; 17: 653-659.
-
(2003)
J. Chemom.
, vol.17
, pp. 653-659
-
-
Thomas, E.V.1
-
20
-
-
0042280342
-
An evaluation of the PoLiSh smoothed regression and the Monte Carlo cross-validation for the determination of the complexity of a PLS model
-
Gourvénec S, Fernández Pierna JA, Massart DL, Rutledge DN. An evaluation of the PoLiSh smoothed regression and the Monte Carlo cross-validation for the determination of the complexity of a PLS model. Chemom. Intell. Lab. Syst. 2003; 68: 41-51.
-
(2003)
Chemom. Intell. Lab. Syst.
, vol.68
, pp. 41-51
-
-
Gourvénec, S.1
Fernández Pierna, J.A.2
Massart, D.L.3
Rutledge, D.N.4
-
21
-
-
9444271627
-
Effective rank for multivariate calibration methods
-
Seipel H, Kalivas JH. Effective rank for multivariate calibration methods. J. Chemom. 2004; 18: 306-311.
-
(2004)
J. Chemom.
, vol.18
, pp. 306-311
-
-
Seipel, H.1
Kalivas, J.H.2
-
22
-
-
3242726813
-
Monte Carlo cross-validation for selecting a model and estimating the prediction error in multivariate calibration
-
Xu QS, Liang YZ, Du YP. Monte Carlo cross-validation for selecting a model and estimating the prediction error in multivariate calibration. J. Chemom. 2004; 18: 112-120.
-
(2004)
J. Chemom.
, vol.18
, pp. 112-120
-
-
Xu, Q.S.1
Liang, Y.Z.2
Du, Y.P.3
-
23
-
-
36148979710
-
A randomization test for PLS component selection
-
Wiklund S, Nilsson D, Eriksson L, Sjöström M, Wold S, Faber K. A randomization test for PLS component selection. J. Chemom. 2007; 21: 427-439.
-
(2007)
J. Chemom.
, vol.21
, pp. 427-439
-
-
Wiklund, S.1
Nilsson, D.2
Eriksson, L.3
Sjöström, M.4
Wold, S.5
Faber, K.6
-
24
-
-
34250813108
-
How to avoid over-fitting in multivariate calibration-the conventional validation approach and an alternative
-
Faber NM, Rajkó R. How to avoid over-fitting in multivariate calibration-the conventional validation approach and an alternative. Anal. Chim. Acta 2007; 595: 98-106.
-
(2007)
Anal. Chim. Acta
, vol.595
, pp. 98-106
-
-
Faber, N.M.1
Rajkó, R.2
-
26
-
-
0003421415
-
The Jackknife, the Bootstrap, and Other Resampling Plans
-
SIAM: Philadelphia, USA,
-
Efron B. The Jackknife, the Bootstrap, and Other Resampling Plans. SIAM: Philadelphia, USA, 1982.
-
(1982)
-
-
Efron, B.1
-
27
-
-
0000302531
-
Bootstrapping principal component regression models
-
Wehrens R, van der Linden WE. Bootstrapping principal component regression models. J. Chemom. 1997; 11: 157-171.
-
(1997)
J. Chemom.
, vol.11
, pp. 157-171
-
-
Wehrens, R.1
van der Linden, W.E.2
-
29
-
-
0042829057
-
Bootstrap-based $\hat {Q}-{kh}^{2} $ for the selection of components and variables in PLS regression
-
Amato S, Vinzi VE. Bootstrap-based $\hat {Q}-{kh}^{2} $ for the selection of components and variables in PLS regression. Chemom. Intell. Lab. Syst. 2003; 68: 5-16.
-
(2003)
Chemom. Intell. Lab. Syst.
, vol.68
, pp. 5-16
-
-
Amato, S.1
Vinzi, V.E.2
-
30
-
-
34548638258
-
Bootstrap-based tolerance intervals for application to method validation
-
Rebafka T, Clémençon S, Feinberg M. Bootstrap-based tolerance intervals for application to method validation. Chemom. Intell. Lab. Syst. 2007; 89: 69-81.
-
(2007)
Chemom. Intell. Lab. Syst.
, vol.89
, pp. 69-81
-
-
Rebafka, T.1
Clémençon, S.2
Feinberg, M.3
-
31
-
-
1542703385
-
Leverage and influence measures related to principal component regression
-
Næs T. Leverage and influence measures related to principal component regression. Chemom. Intell. Lab. Syst. 1989; 5: 155-168.
-
(1989)
Chemom. Intell. Lab. Syst.
, vol.5
, pp. 155-168
-
-
Næs, T.1
-
32
-
-
0000676992
-
Evaluation of alternative spectral feature extraction methods of textural images for multivariate modeling
-
Indahl UG, Næs T. Evaluation of alternative spectral feature extraction methods of textural images for multivariate modeling. J. Chemom. 1998; 12: 261-278.
-
(1998)
J. Chemom.
, vol.12
, pp. 261-278
-
-
Indahl, U.G.1
Næs, T.2
-
33
-
-
33646102895
-
Ascertainment of the number of samples in the validation set in Monte Carlo cross validation and the selection of model dimension with Monte Carlo cross validation
-
Du YP, Kasemsumran S, Maruo K, Nakagawa T, Ozaki Y. Ascertainment of the number of samples in the validation set in Monte Carlo cross validation and the selection of model dimension with Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 2006; 82: 83-89.
-
(2006)
Chemom. Intell. Lab. Syst.
, vol.82
, pp. 83-89
-
-
Du, Y.P.1
Kasemsumran, S.2
Maruo, K.3
Nakagawa, T.4
Ozaki, Y.5
-
34
-
-
33846236907
-
Optimized sample-weighted partial least squares
-
Xu L, Jiang JH, Lin WQ, Zhou YP, Wu HL, Shen GL, Yu RQ. Optimized sample-weighted partial least squares. Talanta 2007; 71: 561-566.
-
(2007)
Talanta
, vol.71
, pp. 561-566
-
-
Xu, L.1
Jiang, J.H.2
Lin, W.Q.3
Zhou, Y.P.4
Wu, H.L.5
Shen, G.L.6
Yu, R.Q.7
-
35
-
-
0000203752
-
Optimal minimal neural interpretation of spectra
-
Borggaard C, Thodberg HH. Optimal minimal neural interpretation of spectra. Anal. Chem. 1992; 64: 545-551.
-
(1992)
Anal. Chem.
, vol.64
, pp. 545-551
-
-
Borggaard, C.1
Thodberg, H.H.2
-
36
-
-
85153983893
-
-
Eigenvector Research, Inc. [1 June 2009].
-
Eigenvector Research, Inc. [1 June 2009].
-
-
-
-
37
-
-
36148979710
-
A randomization test for PLS component selection
-
Wiklund S, Nilsson D, Eriksson L, Sjöström M, Wold S, Faber K. A randomization test for PLS component selection. J. Chemom. 2007; 21: 427-439.
-
(2007)
J. Chemom.
, vol.21
, pp. 427-439
-
-
Wiklund, S.1
Nilsson, D.2
Eriksson, L.3
Sjöström, M.4
Wold, S.5
Faber, K.6
-
38
-
-
0024034712
-
Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information
-
Haaland DM, Thomas EV. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem. 1988; 60: 1193-1202.
-
(1988)
Anal. Chem.
, vol.60
, pp. 1193-1202
-
-
Haaland, D.M.1
Thomas, E.V.2
|