메뉴 건너뛰기




Volumn 21, Issue 10-11, 2007, Pages 427-439

A randomization test for PLS component selection

Author keywords

Component selection; Factor selection; Latent variable selection; Partial least squares; Permutation test; Randomization test

Indexed keywords

RANDOM PROCESSES;

EID: 36148979710     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.1086     Document Type: Article
Times cited : (130)

References (65)
  • 1
    • 0003122173 scopus 로고    scopus 로고
    • PLS in chemistry
    • Schleyer PVR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF, III, Schreiner PR eds, Wiley: Chichester, UK
    • Wold S, Eriksson L, Sjöström M. PLS in chemistry. In The Encyclopedia of Computational Chemistry, Schleyer PVR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF, III, Schreiner PR (eds). Wiley: Chichester, UK, 1999; 2006-2020.
    • (1999) The Encyclopedia of Computational Chemistry , pp. 2006-2020
    • Wold, S.1    Eriksson, L.2    Sjöström, M.3
  • 2
    • 0033662470 scopus 로고    scopus 로고
    • Choosing the number of factors in partial least squares regression: Estimating and minimizing the mean squared error of prediction
    • Denham MC. Choosing the number of factors in partial least squares regression: estimating and minimizing the mean squared error of prediction. J. Chemometr. 2000; 14: 351-361.
    • (2000) J. Chemometr , vol.14 , pp. 351-361
    • Denham, M.C.1
  • 3
    • 0024034712 scopus 로고
    • Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information
    • Haaland DM, Thomas EV. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem. 1988; 60: 1193-1202.
    • (1988) Anal. Chem , vol.60 , pp. 1193-1202
    • Haaland, D.M.1    Thomas, E.V.2
  • 4
    • 0002656714 scopus 로고
    • Selection of optimal regression models via cross-validation
    • Osten DW. Selection of optimal regression models via cross-validation. J. Chemometr. 1988; 2: 39-48.
    • (1988) J. Chemometr , vol.2 , pp. 39-48
    • Osten, D.W.1
  • 5
    • 0000068904 scopus 로고
    • A test of significance for partial least squares regression
    • Wakeling IN, Morris JJ. A test of significance for partial least squares regression. J. Chemometr. 1993; 7: 291-304.
    • (1993) J. Chemometr , vol.7 , pp. 291-304
    • Wakeling, I.N.1    Morris, J.J.2
  • 7
    • 0010055384 scopus 로고    scopus 로고
    • Selecting factors for partial least squares
    • Messick NJ, Kalivas JH, Lang PM. Selecting factors for partial least squares. Microchem. J. 1997; 55: 200-207.
    • (1997) Microchem. J , vol.55 , pp. 200-207
    • Messick, N.J.1    Kalivas, J.H.2    Lang, P.M.3
  • 8
    • 0000079353 scopus 로고    scopus 로고
    • Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares
    • Faber NM, Kowalski BR. Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares. J. Chemometr. 1997; 11: 181-238.
    • (1997) J. Chemometr , vol.11 , pp. 181-238
    • Faber, N.M.1    Kowalski, B.R.2
  • 9
    • 0001375454 scopus 로고    scopus 로고
    • Significance regression: A statistical approach to partial least squares
    • Holcomb TR, Hjalmarsson H, Morari M, Tyler ML. Significance regression: a statistical approach to partial least squares. J. Chemometr. 1997; 11: 283-309.
    • (1997) J. Chemometr , vol.11 , pp. 283-309
    • Holcomb, T.R.1    Hjalmarsson, H.2    Morari, M.3    Tyler, M.L.4
  • 10
    • 0033653073 scopus 로고    scopus 로고
    • Choice of latent explanatory variables: A multiobjective optimization approach
    • Liu D, Shah SL, Grant Fisher D. Choice of latent explanatory variables: a multiobjective optimization approach. J. Chemometr. 2000; 14: 79-92.
    • (2000) J. Chemometr , vol.14 , pp. 79-92
    • Liu, D.1    Shah, S.L.2    Grant Fisher, D.3
  • 11
    • 0034889705 scopus 로고    scopus 로고
    • The PLS multivariate regression model: Testing the significance of successive PLS components
    • Lazraq A, Cléroux R. The PLS multivariate regression model: testing the significance of successive PLS components. J. Chemometr. 2001; 15: 523-536.
    • (2001) J. Chemometr , vol.15 , pp. 523-536
    • Lazraq, A.1    Cléroux, R.2
  • 12
    • 0037185468 scopus 로고    scopus 로고
    • Graphical diagnostics for regression model determinations with consideration of the bias/variance trade-off
    • Green RL, Kalivas JH. Graphical diagnostics for regression model determinations with consideration of the bias/variance trade-off. Chemometr. Intell. Lab. Syst. 2002; 60: 173-188.
    • (2002) Chemometr. Intell. Lab. Syst , vol.60 , pp. 173-188
    • Green, R.L.1    Kalivas, J.H.2
  • 16
    • 84988120965 scopus 로고
    • Causality in structure-activity studies
    • Klopman G, Kalos AN. Causality in structure-activity studies. J. Comput. Chem. 1985; 6: 492-506.
    • (1985) J. Comput. Chem , vol.6 , pp. 492-506
    • Klopman, G.1    Kalos, A.N.2
  • 17
    • 0029021581 scopus 로고
    • Co-inertia analysis of amino-acid physico-chemical properties and protein composition with the ADE package
    • Thioulouse J, Lobry JR. Co-inertia analysis of amino-acid physico-chemical properties and protein composition with the ADE package. Comput. Appl. Biosci. 1995; 11: 321-329.
    • (1995) Comput. Appl. Biosci , vol.11 , pp. 321-329
    • Thioulouse, J.1    Lobry, J.R.2
  • 18
    • 0000174867 scopus 로고    scopus 로고
    • Model validation by permutation tests: Applications to variable selection
    • Lindgren F, Hansen B, Karcher W, Sjöström M, Eriksson L. Model validation by permutation tests: applications to variable selection. J. Chemometr. 1996; 10: 521-532.
    • (1996) J. Chemometr , vol.10 , pp. 521-532
    • Lindgren, F.1    Hansen, B.2    Karcher, W.3    Sjöström, M.4    Eriksson, L.5
  • 19
    • 20844448884 scopus 로고    scopus 로고
    • Validation tools for variable subset regression
    • Baumann K, Stiefl N. Validation tools for variable subset regression. J. Comput.-Aided Mol. Des. 2004; 18: 549-562.
    • (2004) J. Comput.-Aided Mol. Des , vol.18 , pp. 549-562
    • Baumann, K.1    Stiefl, N.2
  • 20
    • 0027943145 scopus 로고
    • Comparing the predictive accuracy of models using a simple randomization test
    • van der Voet H. Comparing the predictive accuracy of models using a simple randomization test. Chemometr. Intell. Lab. Syst. 1994; 25: 313-323.
    • (1994) Chemometr. Intell. Lab. Syst , vol.25 , pp. 313-323
    • van der Voet, H.1
  • 21
    • 0029058144 scopus 로고
    • Corrigendum to 'comparing the predictive accuracy of models using a simple randomization test'
    • van der Voet H. Corrigendum to 'comparing the predictive accuracy of models using a simple randomization test'. Chemometr. Intell. Lab. Syst. 1995; 28: 315.
    • (1995) Chemometr. Intell. Lab. Syst , vol.28 , pp. 315
    • van der Voet, H.1
  • 22
    • 58149321922 scopus 로고
    • The role of permutation tests in exploratory multivariate data analysis
    • Dijksterhuis GB, Heiser WJ. The role of permutation tests in exploratory multivariate data analysis. Food Qual. Prefer. 1995; 6: 263-270.
    • (1995) Food Qual. Prefer , vol.6 , pp. 263-270
    • Dijksterhuis, G.B.1    Heiser, W.J.2
  • 23
    • 0028454829 scopus 로고
    • Extending the trend vector: The trend matrix and sample-based partial least squares
    • Sheridan RP, Nachbar RB, Bush BL. Extending the trend vector: the trend matrix and sample-based partial least squares. J. Comput.-Aided Mol. Des. 1994; 8: 323-340.
    • (1994) J. Comput.-Aided Mol. Des , vol.8 , pp. 323-340
    • Sheridan, R.P.1    Nachbar, R.B.2    Bush, B.L.3
  • 24
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. J. Roy. Stat. Soc. B 1974; 36: 111-133.
    • (1974) J. Roy. Stat. Soc. B , vol.36 , pp. 111-133
    • Stone, M.1
  • 25
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of components in factor and principal components models
    • Wold S. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 1978; 20: 397-405.
    • (1978) Technometrics , vol.20 , pp. 397-405
    • Wold, S.1
  • 26
    • 0002386245 scopus 로고
    • The prediction sum of squares as a criterion for selecting prediction variables
    • Technical Report No. 23, Dept. of Statistics, University of Kentucky: Lexington, KY
    • Allen DM. The prediction sum of squares as a criterion for selecting prediction variables. Technical Report No. 23, Dept. of Statistics, University of Kentucky: Lexington, KY, 1971.
    • (1971)
    • Allen, D.M.1
  • 27
    • 0001988497 scopus 로고
    • Multivariate calibration by data compression
    • Williams P, Norris K eds, American Cereal Association: St Paul, MN
    • Martens H, Naes T. Multivariate calibration by data compression. In Near-Infrared Technology in the Agricultural and Food Industries, Williams P, Norris K (eds). American Cereal Association: St Paul, MN, 1987; 57-87.
    • (1987) Near-Infrared Technology in the Agricultural and Food Industries , pp. 57-87
    • Martens, H.1    Naes, T.2
  • 28
    • 0025517044 scopus 로고
    • Alternatives to cross-validatory estimation of the number of factors in multivariate calibration
    • Lorber A, Kowalski BR. Alternatives to cross-validatory estimation of the number of factors in multivariate calibration. Appl. Spectrosc. 1990; 44: 1464-1470.
    • (1990) Appl. Spectrosc , vol.44 , pp. 1464-1470
    • Lorber, A.1    Kowalski, B.R.2
  • 29
    • 0025078552 scopus 로고
    • Calibration modeling by partial least-squares and principal component regression and its optimization using an improved leverage correction for prediction testing
    • Marbach R, Heise HM. Calibration modeling by partial least-squares and principal component regression and its optimization using an improved leverage correction for prediction testing. Chemometr. Intell. Lab. Syst. 1990; 9: 45-63.
    • (1990) Chemometr. Intell. Lab. Syst , vol.9 , pp. 45-63
    • Marbach, R.1    Heise, H.M.2
  • 31
    • 85153989429 scopus 로고    scopus 로고
    • Unscrambler for Windows, User's guide. CAMO AS: Trondheim, Norway, 1996.
    • Unscrambler for Windows, User's guide. CAMO AS: Trondheim, Norway, 1996.
  • 32
    • 84950445313 scopus 로고
    • Cross-validation of regression models
    • Picard RR, Cook RD. Cross-validation of regression models. J. Amer. Stat. Assoc. 1984; 79: 575-583.
    • (1984) J. Amer. Stat. Assoc , vol.79 , pp. 575-583
    • Picard, R.R.1    Cook, R.D.2
  • 33
    • 21144474350 scopus 로고
    • Linear model selection by cross-validation
    • Shao J. Linear model selection by cross-validation. J. Amer. Stat. Assoc. 1993; 88: 486-194.
    • (1993) J. Amer. Stat. Assoc , vol.88 , pp. 486-194
    • Shao, J.1
  • 34
    • 21144472438 scopus 로고
    • Model selection via multifold cross validation
    • Zhang P. Model selection via multifold cross validation. Ann. Stat. 1993; 21: 299-313.
    • (1993) Ann. Stat , vol.21 , pp. 299-313
    • Zhang, P.1
  • 36
    • 0042280342 scopus 로고    scopus 로고
    • An evaluation of the PoLiSh smoothed regression and the Monte Carlo cross-validation for the determination of the complexity of a PLS model
    • Gourvénec S, Fernández Pierna JA, Massart DL, Rutledge DN. An evaluation of the PoLiSh smoothed regression and the Monte Carlo cross-validation for the determination of the complexity of a PLS model. Chemometr. Intell. Lab. Syst. 2003; 68: 41-51.
    • (2003) Chemometr. Intell. Lab. Syst , vol.68 , pp. 41-51
    • Gourvénec, S.1    Fernández Pierna, J.A.2    Massart, D.L.3    Rutledge, D.N.4
  • 37
    • 3242726813 scopus 로고    scopus 로고
    • Monte Carlo cross-validation for selecting a model and estimating the prediction error in multivariate calibration
    • Xu Q-S, Liang Y-Z, Du Y-P. Monte Carlo cross-validation for selecting a model and estimating the prediction error in multivariate calibration. J. Chemometr. 2004; 18: 112-120.
    • (2004) J. Chemometr , vol.18 , pp. 112-120
    • Xu, Q.-S.1    Liang Y-Z, D.Y.-P.2
  • 38
    • 0036062152 scopus 로고    scopus 로고
    • A systematic evaluation of the benefits and hazards of variable selection in latent variable regression. Part I. Search algorithm, theory and simulations
    • Baumann K, Albert H, von Korff M. A systematic evaluation of the benefits and hazards of variable selection in latent variable regression. Part I. Search algorithm, theory and simulations. J. Chemometr. 2002; 16: 339-350.
    • (2002) J. Chemometr , vol.16 , pp. 339-350
    • Baumann, K.1    Albert, H.2    von Korff, M.3
  • 39
    • 0036064536 scopus 로고    scopus 로고
    • A systematic evaluation of the benefits and hazards of variable selection in latent variable regression. Part II. Practical applications
    • Baumann K, von Korff M, Albert H. A systematic evaluation of the benefits and hazards of variable selection in latent variable regression. Part II. Practical applications. J. Chemometr. 2002; 16: 351-360.
    • (2002) J. Chemometr , vol.16 , pp. 351-360
    • Baumann, K.1    von Korff, M.2    Albert, H.3
  • 40
    • 0037841526 scopus 로고    scopus 로고
    • Cross-validation as the objective function for variable selection techniques
    • Baumann K. Cross-validation as the objective function for variable selection techniques. Trends Anal. Chem. 2003; 22: 395-406.
    • (2003) Trends Anal. Chem , vol.22 , pp. 395-406
    • Baumann, K.1
  • 42
    • 1942518934 scopus 로고    scopus 로고
    • SAS® partial least squares regression for analysis of spectroscopic data
    • Reeves JB, III, Delwiche SR. SAS® partial least squares regression for analysis of spectroscopic data. J. Near Infrared Spectrosc. 2003; 11: 415-431.
    • (2003) J. Near Infrared Spectrosc , vol.11 , pp. 415-431
    • Reeves III, J.B.1    Delwiche, S.R.2
  • 43
    • 0000507891 scopus 로고    scopus 로고
    • Pseudo-degrees of freedom for complex predictive models: The example of partial least squares
    • van der Voet H. Pseudo-degrees of freedom for complex predictive models: the example of partial least squares. J. Chemometr. 1999; 13: 195-208.
    • (1999) J. Chemometr , vol.13 , pp. 195-208
    • van der Voet, H.1
  • 45
    • 0032517815 scopus 로고    scopus 로고
    • Validation and verification of regression in small data sets
    • Martens HA, Dardenne P. Validation and verification of regression in small data sets. Chemometr. Intell. Lab. Syst. 1998; 44: 99-121.
    • (1998) Chemometr. Intell. Lab. Syst , vol.44 , pp. 99-121
    • Martens, H.A.1    Dardenne, P.2
  • 46
    • 0034398904 scopus 로고    scopus 로고
    • Variable selection in near infrared spectroscopy based on significance testing in partial least squares regression
    • Westad F, Martens H. Variable selection in near infrared spectroscopy based on significance testing in partial least squares regression. J. Near Infrared Spectrosc. 2000; 8: 117-124.
    • (2000) J. Near Infrared Spectrosc , vol.8 , pp. 117-124
    • Westad, F.1    Martens, H.2
  • 47
    • 0032517832 scopus 로고    scopus 로고
    • Review of partial least squares regression prediction error in Unscrambler
    • Hay M, Steen K, Martens H. Review of partial least squares regression prediction error in Unscrambler. Chemometr. Intell. Lab. Syst. 1998; 44: 123-133.
    • (1998) Chemometr. Intell. Lab. Syst , vol.44 , pp. 123-133
    • Hay, M.1    Steen, K.2    Martens, H.3
  • 48
    • 0034684017 scopus 로고    scopus 로고
    • Comparison of two recently proposed expressions for partial least squares regression prediction error
    • Faber NM. Comparison of two recently proposed expressions for partial least squares regression prediction error. Chemometr. Intell. Lab. Syst. 2000; 52: 123-134.
    • (2000) Chemometr. Intell. Lab. Syst , vol.52 , pp. 123-134
    • Faber, N.M.1
  • 49
    • 0032801090 scopus 로고    scopus 로고
    • Estimating the uncertainty in estimates of root mean square error of prediction: Application to determining the size of an adequate test set in multivariate calibration
    • Faber NM. Estimating the uncertainty in estimates of root mean square error of prediction: application to determining the size of an adequate test set in multivariate calibration. Chemometr. Intell. Lab. Syst. 1999; 49: 79-89.
    • (1999) Chemometr. Intell. Lab. Syst , vol.49 , pp. 79-89
    • Faber, N.M.1
  • 50
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jack knife
    • Efron B. Bootstrap methods: another look at the jack knife. Ann. Stat. 1979; 7: 1-26.
    • (1979) Ann. Stat , vol.7 , pp. 1-26
    • Efron, B.1
  • 52
    • 0000988073 scopus 로고
    • New light on the correlation coefficient and its transform
    • Hotelling H. New light on the correlation coefficient and its transform. J. Roy. Stat. Soc. B 1953; 15: 193-232.
    • (1953) J. Roy. Stat. Soc. B , vol.15 , pp. 193-232
    • Hotelling, H.1
  • 54
    • 0026015808 scopus 로고
    • Estimation of growth and extinction parameters for endangered species
    • Dennis B, Munholland PL, Scott JM. Estimation of growth and extinction parameters for endangered species. Ecol. Monogr. 1991; 61: 115-143.
    • (1991) Ecol. Monogr , vol.61 , pp. 115-143
    • Dennis, B.1    Munholland, P.L.2    Scott, J.M.3
  • 55
    • 84900531145 scopus 로고
    • Statistical validation of QSAR results
    • van de Waterbeemd H ed, VCH Publishers: Weinheim
    • Wold S, Eriksson L. Statistical validation of QSAR results. In Chemometric Methods in Molecular Design, van de Waterbeemd H (ed.). VCH Publishers: Weinheim, 1995; 309-318.
    • (1995) Chemometric Methods in Molecular Design , pp. 309-318
    • Wold, S.1    Eriksson, L.2
  • 58
    • 15744401639 scopus 로고    scopus 로고
    • Prediction of thermo mechanical pulp brightness using NIR spectroscopy on wood raw material
    • Nilsson D, Edlund U, Sjöström M, Agnemo R. Prediction of thermo mechanical pulp brightness using NIR spectroscopy on wood raw material. Paperi Ja Puu (Pap. Timber) 2005; 87: 102-109.
    • (2005) Paperi Ja Puu (Pap. Timber) , vol.87 , pp. 102-109
    • Nilsson, D.1    Edlund, U.2    Sjöström, M.3    Agnemo, R.4
  • 59
    • 0037470098 scopus 로고    scopus 로고
    • Estimation of partial least squares regression (PLSR) prediction uncertainty when the reference values carry a sizeable measurement error
    • Fernández Pierna JA, Jin L, Wahl F, Faber NM, Massart DL. Estimation of partial least squares regression (PLSR) prediction uncertainty when the reference values carry a sizeable measurement error. Chemometr. Intell. Lab. Syst. 2003; 65: 281-291.
    • (2003) Chemometr. Intell. Lab. Syst , vol.65 , pp. 281-291
    • Fernández Pierna, J.A.1    Jin, L.2    Wahl, F.3    Faber, N.M.4    Massart, D.L.5
  • 60
    • 29244446302 scopus 로고    scopus 로고
    • Pine and spruce roundwood species classification using multivariate image analysis on bark
    • Nilsson D, Edlund U. Pine and spruce roundwood species classification using multivariate image analysis on bark. Holzforschung 2005; 59: 689-695.
    • (2005) Holzforschung , vol.59 , pp. 689-695
    • Nilsson, D.1    Edlund, U.2
  • 62
    • 0018354433 scopus 로고
    • A quantitative study on the relationship between structure and behavi activity of peptides related to ACTH
    • Kelder J, Greven HM. A quantitative study on the relationship between structure and behavi activity of peptides related to ACTH. Rec. Trav. Chim. Pays-Bas 1979; 98: 168-172.
    • (1979) Rec. Trav. Chim. Pays-Bas , vol.98 , pp. 168-172
    • Kelder, J.1    Greven, H.M.2
  • 63
    • 0000626789 scopus 로고    scopus 로고
    • Evolutionary variable selection in regression and PLS analyses
    • Kubinyi H. Evolutionary variable selection in regression and PLS analyses. J. Chemometr. 1996; 10: 119-133.
    • (1996) J. Chemometr , vol.10 , pp. 119-133
    • Kubinyi, H.1
  • 65
    • 84946280337 scopus 로고
    • On the structure of partial least squares regression
    • Helland IS. On the structure of partial least squares regression. Commun. Stat. - Simula. 1988; 17: 581-607.
    • (1988) Commun. Stat. - Simula , vol.17 , pp. 581-607
    • Helland, I.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.