-
1
-
-
0035089251
-
A boundary integral equation method for the two-dimensional diffusion equation subject to a nonlocal condition
-
Ang W.T. A boundary integral equation method for the two-dimensional diffusion equation subject to a nonlocal condition. Eng. Anal. Bound Elem. 25 (2001) 1-6
-
(2001)
Eng. Anal. Bound Elem.
, vol.25
, pp. 1-6
-
-
Ang, W.T.1
-
2
-
-
0348057899
-
Existence of solutions for one-dimensional wave equations with non-local conditions
-
Beilin S.A. Existence of solutions for one-dimensional wave equations with non-local conditions. Electron. J. Differential Equations 76 (2001) 1-8
-
(2001)
Electron. J. Differential Equations
, vol.76
, pp. 1-8
-
-
Beilin, S.A.1
-
3
-
-
0025545369
-
An implicit finite difference scheme for the diffusion equation subject to mass specification
-
Cannon J.R., Lin Y., and Wang S. An implicit finite difference scheme for the diffusion equation subject to mass specification. Internat. J. Engrg. Sci. 28 (1990) 573-578
-
(1990)
Internat. J. Engrg. Sci.
, vol.28
, pp. 573-578
-
-
Cannon, J.R.1
Lin, Y.2
Wang, S.3
-
4
-
-
38249004707
-
A numerical procedure for diffusion subject to the specification of mass
-
Cannon J.R., and Matheson A.L. A numerical procedure for diffusion subject to the specification of mass. Internat. J. Engrg. Sci. 31 (1993) 347-355
-
(1993)
Internat. J. Engrg. Sci.
, vol.31
, pp. 347-355
-
-
Cannon, J.R.1
Matheson, A.L.2
-
5
-
-
0039631111
-
An implicit finite difference scheme for the diffusion equation subject to the specification of mass in a portion of the domain
-
Noye J. (Ed), North-Holland, Amsterdam
-
Cannon J.R., and van der Hoek J. An implicit finite difference scheme for the diffusion equation subject to the specification of mass in a portion of the domain. In: Noye J. (Ed). Numerical Solutions of Partial Differential Equations (1982), North-Holland, Amsterdam 527-539
-
(1982)
Numerical Solutions of Partial Differential Equations
, pp. 527-539
-
-
Cannon, J.R.1
van der Hoek, J.2
-
6
-
-
0038373225
-
Numerical solution of a parabolic equation with non-local boundary specifications
-
Dehghan M. Numerical solution of a parabolic equation with non-local boundary specifications. Appl. Math. Comput. 145 (2003) 185-194
-
(2003)
Appl. Math. Comput.
, vol.145
, pp. 185-194
-
-
Dehghan, M.1
-
7
-
-
11144275388
-
On the solution of an initial-boundary value problem that combines Neumann and integral equation for the wave equation
-
Dehghan M. On the solution of an initial-boundary value problem that combines Neumann and integral equation for the wave equation. Numer. Methods Partial Differential Equations 21 (2005) 24-40
-
(2005)
Numer. Methods Partial Differential Equations
, vol.21
, pp. 24-40
-
-
Dehghan, M.1
-
8
-
-
0030721325
-
Efficient parallel algorithm for the two-dimensional diffusion equation subject to specification of mass
-
Gumel A.B., Ang W.T., and Twizell E.H. Efficient parallel algorithm for the two-dimensional diffusion equation subject to specification of mass. Internat. J. Comput. Math. 64 (1997) 153-163
-
(1997)
Internat. J. Comput. Math.
, vol.64
, pp. 153-163
-
-
Gumel, A.B.1
Ang, W.T.2
Twizell, E.H.3
-
9
-
-
3042528542
-
Behaviour of critical solutions of a nonlocal hyperbolic problem in ohmic heating of foods
-
Kavalloris N.I., and Tzanetis D.S. Behaviour of critical solutions of a nonlocal hyperbolic problem in ohmic heating of foods. Appl. Math. E-Notes 2 (2002) 59-65
-
(2002)
Appl. Math. E-Notes
, vol.2
, pp. 59-65
-
-
Kavalloris, N.I.1
Tzanetis, D.S.2
-
10
-
-
0028534117
-
Explicit finite difference methods for two-dimensional diffusion with a non-local boundary condition
-
Noye B.J., Dehghan M., and van der Hoek J. Explicit finite difference methods for two-dimensional diffusion with a non-local boundary condition. Internat. J. Engrg. Sci. 32 (1994) 1829-1834
-
(1994)
Internat. J. Engrg. Sci.
, vol.32
, pp. 1829-1834
-
-
Noye, B.J.1
Dehghan, M.2
van der Hoek, J.3
|