메뉴 건너뛰기




Volumn 56, Issue 8, 2006, Pages 1054-1060

A numerical method for the wave equation subject to a non-local conservation condition

Author keywords

Integro differential formulation; Local interpolating functions; Non local condition; Numerical solution; Wave equation

Indexed keywords

BOUNDARY CONDITIONS; INTEGRODIFFERENTIAL EQUATIONS; NUMERICAL METHODS; PROBLEM SOLVING;

EID: 33744510547     PISSN: 01689274     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apnum.2005.09.006     Document Type: Article
Times cited : (39)

References (10)
  • 1
    • 0035089251 scopus 로고    scopus 로고
    • A boundary integral equation method for the two-dimensional diffusion equation subject to a nonlocal condition
    • Ang W.T. A boundary integral equation method for the two-dimensional diffusion equation subject to a nonlocal condition. Eng. Anal. Bound Elem. 25 (2001) 1-6
    • (2001) Eng. Anal. Bound Elem. , vol.25 , pp. 1-6
    • Ang, W.T.1
  • 2
    • 0348057899 scopus 로고    scopus 로고
    • Existence of solutions for one-dimensional wave equations with non-local conditions
    • Beilin S.A. Existence of solutions for one-dimensional wave equations with non-local conditions. Electron. J. Differential Equations 76 (2001) 1-8
    • (2001) Electron. J. Differential Equations , vol.76 , pp. 1-8
    • Beilin, S.A.1
  • 3
    • 0025545369 scopus 로고
    • An implicit finite difference scheme for the diffusion equation subject to mass specification
    • Cannon J.R., Lin Y., and Wang S. An implicit finite difference scheme for the diffusion equation subject to mass specification. Internat. J. Engrg. Sci. 28 (1990) 573-578
    • (1990) Internat. J. Engrg. Sci. , vol.28 , pp. 573-578
    • Cannon, J.R.1    Lin, Y.2    Wang, S.3
  • 4
    • 38249004707 scopus 로고
    • A numerical procedure for diffusion subject to the specification of mass
    • Cannon J.R., and Matheson A.L. A numerical procedure for diffusion subject to the specification of mass. Internat. J. Engrg. Sci. 31 (1993) 347-355
    • (1993) Internat. J. Engrg. Sci. , vol.31 , pp. 347-355
    • Cannon, J.R.1    Matheson, A.L.2
  • 5
    • 0039631111 scopus 로고
    • An implicit finite difference scheme for the diffusion equation subject to the specification of mass in a portion of the domain
    • Noye J. (Ed), North-Holland, Amsterdam
    • Cannon J.R., and van der Hoek J. An implicit finite difference scheme for the diffusion equation subject to the specification of mass in a portion of the domain. In: Noye J. (Ed). Numerical Solutions of Partial Differential Equations (1982), North-Holland, Amsterdam 527-539
    • (1982) Numerical Solutions of Partial Differential Equations , pp. 527-539
    • Cannon, J.R.1    van der Hoek, J.2
  • 6
    • 0038373225 scopus 로고    scopus 로고
    • Numerical solution of a parabolic equation with non-local boundary specifications
    • Dehghan M. Numerical solution of a parabolic equation with non-local boundary specifications. Appl. Math. Comput. 145 (2003) 185-194
    • (2003) Appl. Math. Comput. , vol.145 , pp. 185-194
    • Dehghan, M.1
  • 7
    • 11144275388 scopus 로고    scopus 로고
    • On the solution of an initial-boundary value problem that combines Neumann and integral equation for the wave equation
    • Dehghan M. On the solution of an initial-boundary value problem that combines Neumann and integral equation for the wave equation. Numer. Methods Partial Differential Equations 21 (2005) 24-40
    • (2005) Numer. Methods Partial Differential Equations , vol.21 , pp. 24-40
    • Dehghan, M.1
  • 8
    • 0030721325 scopus 로고    scopus 로고
    • Efficient parallel algorithm for the two-dimensional diffusion equation subject to specification of mass
    • Gumel A.B., Ang W.T., and Twizell E.H. Efficient parallel algorithm for the two-dimensional diffusion equation subject to specification of mass. Internat. J. Comput. Math. 64 (1997) 153-163
    • (1997) Internat. J. Comput. Math. , vol.64 , pp. 153-163
    • Gumel, A.B.1    Ang, W.T.2    Twizell, E.H.3
  • 9
    • 3042528542 scopus 로고    scopus 로고
    • Behaviour of critical solutions of a nonlocal hyperbolic problem in ohmic heating of foods
    • Kavalloris N.I., and Tzanetis D.S. Behaviour of critical solutions of a nonlocal hyperbolic problem in ohmic heating of foods. Appl. Math. E-Notes 2 (2002) 59-65
    • (2002) Appl. Math. E-Notes , vol.2 , pp. 59-65
    • Kavalloris, N.I.1    Tzanetis, D.S.2
  • 10
    • 0028534117 scopus 로고
    • Explicit finite difference methods for two-dimensional diffusion with a non-local boundary condition
    • Noye B.J., Dehghan M., and van der Hoek J. Explicit finite difference methods for two-dimensional diffusion with a non-local boundary condition. Internat. J. Engrg. Sci. 32 (1994) 1829-1834
    • (1994) Internat. J. Engrg. Sci. , vol.32 , pp. 1829-1834
    • Noye, B.J.1    Dehghan, M.2    van der Hoek, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.