-
2
-
-
84966230184
-
On the blow up of ut at quenching
-
[DL89] Deng K and Levine H A 1989 On the blow up of ut at quenching Proc. Am. Math. Soc. 106 1049-56
-
(1989)
Proc. Am. Math. Soc.
, vol.106
, pp. 1049-1056
-
-
Deng, K.1
Levine, H.A.2
-
3
-
-
18144401668
-
Existence and asymptotic behavior for a singular parabolic equation
-
DOI 10.1090/S0002-9947-04-03811-5, PII S0002994704038115
-
[DM05] Dávila J and Montenegro M 2005 Existence and asymptotic behavior for a singular parabolic equationTrans. Am. Math. Soc. 357 1801-28 (electronic) (Pubitemid 40622695)
-
(2005)
Transactions of the American Mathematical Society
, vol.357
, Issue.5
, pp. 1801-1828
-
-
Davila, J.1
Montenegro, M.2
-
4
-
-
0010816767
-
Quenching profiles for one-dimensional semilinear heat equations
-
[FG93] Filippas S and Guo J S 1993 Quenching profiles for one-dimensional semilinear heat equations Q. Appl. Math. 51 713-29
-
(1993)
Q. Appl. Math.
, vol.51
, pp. 713-729
-
-
Filippas, S.1
Guo, J.S.2
-
6
-
-
0006665467
-
Asymptotic analysis of quenching problems
-
[FK92a] Fila M and Kawohl B 1992 Asymptotic analysis of quenching problems Rocky Mountain J. Math. 22 563-77
-
(1992)
Rocky Mountain J. Math.
, vol.22
, pp. 563-577
-
-
Fila, M.1
Kawohl, B.2
-
9
-
-
84990616610
-
Asymptotically self-similar blow-up of semilinear heat equations
-
[GK85] Giga Y and Kohn R V 1985 Asymptotically self-similar blow-up of semilinear heat equations Commun. Pure Appl. Math. 38 297-319
-
(1985)
Commun. Pure Appl. Math.
, vol.38
, pp. 297-319
-
-
Giga, Y.1
Kohn, R.V.2
-
10
-
-
34548677069
-
Some remarks on a singular reaction-diffusion system arising in predatorprey modeling
-
electronic
-
[GL07] Gaucel S and Langlais M2007 Some remarks on a singular reaction-diffusion system arising in predatorprey modeling Discrete Contin. Dyn. Syst. Ser. B 8 61-72 (electronic)
-
(2007)
Discrete Contin. Dyn. Syst. Ser. B
, vol.8
, pp. 61-72
-
-
Gaucel, S.1
Langlais, M.2
-
11
-
-
0025494889
-
On the quenching behavior of the solution of a semilinear parabolic equation
-
[Guo90] Guo J S 1990 On the quenching behavior of the solution of a semilinear parabolic equation J. Math. Anal.Appl. 151 58-79
-
(1990)
J. Math. Anal.Appl.
, vol.151
, pp. 58-79
-
-
Guo, J.S.1
-
12
-
-
0010876410
-
On the quenching rate estimate
-
[Guo91a] Guo J S 1991 On the quenching rate estimate Q. Appl. Math. 49 747-52
-
(1991)
Q. Appl. Math.
, vol.49
, pp. 747-752
-
-
Guo, J.S.1
-
13
-
-
0039706351
-
On the semilinear elliptic equation Δ w - 1 2 y · Δ w + Δ w λ wSp-β = 0 in
-
[Guo91b] Guo J S 1991 On the semilinear elliptic Δ w - 1 2 y · Δ w + Δ w λ wSp-β = 0 in RSp n Chin. J. Math. 19 355-77
-
(1991)
RSp N Chin. J. Math.
, vol.19
, pp. 355-377
-
-
Guo, J.S.1
-
14
-
-
1842692780
-
The problem of blow-up in nonlinear parabolic equations
-
[GV02] GalaktionovVAandVázquez J L 2002 The problem of blow-up in nonlinear parabolic equations Discrete Contin. Dyn. Syst. 8 399-433 Current developments in partial differential equations (Temuco, 1999) (Pubitemid 41397957)
-
(2002)
Discrete and Continuous Dynamical Systems
, vol.8
, Issue.2
, pp. 399-433
-
-
Galaktionov, V.A.1
Vazquez, J.L.2
-
18
-
-
34147161892
-
Numerical solution of quenching problems using mesh-dependent variable temporal steps
-
DOI 10.1016/j.apnum.2006.07.018, PII S0168927406001565
-
[LLT07] Liang KW, Lin P and Tan R C E 2007 Numerical solution of quenching problems using mesh-dependent variable temporal steps Appl. Numer. Math. 57 791-800 (Pubitemid 46575014)
-
(2007)
Applied Numerical Mathematics
, vol.57
, pp. 791-800
-
-
Liang, K.W.1
Lin, P.2
Tan, R.C.E.3
-
19
-
-
0034164847
-
A Liouville theorem for the critical generalized Korteweg-de Vries equation
-
[MM00] Martel Y and Merle F 2000 A Liouville theorem for the critical generalized Korteweg-de Vries equation J. Math. Pures Appl. (9) 79 339-425
-
(2000)
J. Math. Pures Appl.
, vol.79
, Issue.9
, pp. 339-425
-
-
Martel, Y.1
Merle, F.2
-
20
-
-
0041163754
-
Reconnection of vortex with the boundary and finite time quenching
-
PII S0951771597850967
-
[MZ97] Merle F and ZaagH1997 Reconnection of vortex with the boundary and finite time quenching Nonlinearity 10 1497-550 (Pubitemid 127362604)
-
(1997)
Nonlinearity
, vol.10
, Issue.6
, pp. 1497-1550
-
-
Merle, F.1
Zaag, H.2
-
21
-
-
0032338170
-
Optimal estimates for blowup rate and behavior for nonlinear heat equations
-
[MZ98a] Merle F and Zaag H 1998 Optimal estimates for blowup rate and behavior for nonlinear heat equations Commun. Pure Appl. Math. 51 139-96
-
(1998)
Commun. Pure Appl. Math.
, vol.51
, pp. 139-196
-
-
Merle, F.1
Zaag, H.2
-
22
-
-
0032218494
-
Refined uniform estimates at blow-up and applications for nonlinear heat equations
-
[MZ98b] Merle F and Zaag H 1998 Refined uniform estimates at blow-up and applications for nonlinear heat equations Geom. Funct. Anal. 8 1043-85 (Pubitemid 128336157)
-
(1998)
Geometric and Functional Analysis
, vol.8
, Issue.6
, pp. 1043-1085
-
-
Merle, F.1
Zaag, H.2
-
23
-
-
0034407299
-
A Liouville theorem for vector-valued nonlinear heat equations and applications
-
[MZ00] Merle F and Zaag H 2000 A Liouville theorem for vector-valued nonlinear heat equations and applications Math. Ann. 316 103-37
-
(2000)
Math. Ann.
, vol.316
, pp. 103-137
-
-
Merle, F.1
Zaag, H.2
-
24
-
-
46749129675
-
Openness of the set of non characteristic points and regularity of the blow-up curve for the 1 d semilinear wave equation
-
[MZ08] Merle F and Zaag H 2008 Openness of the set of non characteristic points and regularity of the blow-up curve for the 1 d semilinear wave equation Commun. Math. Phys. 282 55-86
-
(2008)
Commun. Math. Phys.
, vol.282
, pp. 55-86
-
-
Merle, F.1
Zaag, H.2
-
25
-
-
77951840643
-
A liouville theorem for vector valued semilinear heat equations with no gradient structure and applications to blow-up
-
[NZ10] Nouaili N and Zaag H 2010 A liouville theorem for vector valued semilinear heat equations with no gradient structure and applications to blow-up Trans. Am. Math. Soc. 362 (7) 3391-434
-
(2010)
Trans. Am. Math. Soc.
, vol.362
, Issue.7
, pp. 3391-3434
-
-
Nouaili, N.1
Zaag, H.2
-
27
-
-
0000428167
-
Higher-dimensional blow up for semilinear parabolic equations
-
[Vel92] Velázquez J J L 1992 Higher-dimensional blow up for semilinear parabolic equations Commun. Partial Diff. Eqns 17 1567-96
-
(1992)
Commun. Partial Diff. Eqns
, vol.17
, pp. 1567-1596
-
-
Velázquez, J.J.L.1
-
28
-
-
84968503478
-
Classification of singularities for blowing up solutions in higher dimensions
-
[Vel93] Velázquez J J L 1993 Classification of singularities for blowing up solutions in higher dimensions Trans. Am. Math. Soc. 338 441-64
-
(1993)
Trans. Am. Math. Soc.
, vol.338
, pp. 441-464
-
-
Velázquez, J.J.L.1
-
29
-
-
0035526708
-
A Liouville theorem and blowup behavior for a vector-valued nonlinear heat equation with no gradient structure
-
[Zaa01] Zaag H 2001 A Liouville theorem and blowup behavior for a vector-valued nonlinear heat equation with no gradient structure Commun. Pure Appl. Math. 54 107-33 (Pubitemid 33569938)
-
(2001)
Communications on Pure and Applied Mathematics
, vol.54
, Issue.1
, pp. 107-133
-
-
Zaag, H.1
|