메뉴 건너뛰기




Volumn 282, Issue 1, 2008, Pages 55-86

Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1 D semilinear wave equation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 46749129675     PISSN: 00103616     EISSN: 14320916     Source Type: Journal    
DOI: 10.1007/s00220-008-0532-3     Document Type: Article
Times cited : (60)

References (25)
  • 2
    • 46749083071 scopus 로고    scopus 로고
    • A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations
    • (Forges-les-Eaux, 2002), Nantes:Univ. Nantes
    • Alinhac, S.: A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations. In: Journées "Équations aux Dérivées Partielles" (Forges-les-Eaux, 2002), Nantes:Univ. Nantes, 2002 pp. Exp. No. I, 33
    • (2002) Journées "équations Aux Dérivées Partielles" , Issue.1 , pp. 33
    • Alinhac, S.1
  • 3
    • 0347711924 scopus 로고    scopus 로고
    • Optimal bounds on positive blow-up solutions for a semilinear wave equation
    • Antonini C., Merle F.: Optimal bounds on positive blow-up solutions for a semilinear wave equation. Internat. Math. Res. Notices. 21, 1141-1167 (2001)
    • (2001) Internat. Math. Res. Notices. , vol.21 , pp. 1141-1167
    • Antonini, C.1    Merle, F.2
  • 4
    • 0002234036 scopus 로고
    • Differentiability of the blow-up curve for one-dimensional nonlinear wave equations
    • 1
    • Caffarelli L.A., Friedman A.: Differentiability of the blow-up curve for one-dimensional nonlinear wave equations. Arch. Rati. Mech. Anal. 91(1), 83-98 (1985)
    • (1985) Arch. Rati. Mech. Anal. , vol.91 , pp. 83-98
    • Caffarelli, L.A.1    Friedman, A.2
  • 5
    • 84967773646 scopus 로고
    • The blow-up boundary for nonlinear wave equations
    • 1
    • Caffarelli L.A., Friedman. A.: The blow-up boundary for nonlinear wave equations. Trans. Amer. Math. Soc. 297(1), 223-241 (1986)
    • (1986) Trans. Amer. Math. Soc. , vol.297 , pp. 223-241
    • Caffarelli, L.A.1    Friedman., A.2
  • 6
    • 0003000536 scopus 로고
    • The global Cauchy problem for the critical nonlinear wave equation
    • 1
    • Ginibre J., Soffer A., Velo G.: The global Cauchy problem for the critical nonlinear wave equation. J. Funct. Anal. 110(1), 96-130 (1992)
    • (1992) J. Funct. Anal. , vol.110 , pp. 96-130
    • Ginibre, J.1    Soffer, A.2    Velo, G.3
  • 7
    • 0000269715 scopus 로고
    • Blow-up surfaces for nonlinear wave equations. i
    • 3-4
    • Kichenassamy S., Littman W.: Blow-up surfaces for nonlinear wave equations. I. Comm. Partial Differe. Eq. 18(3-4), 431-452 (1993)
    • (1993) Comm. Partial Differe. Eq. , vol.18 , pp. 431-452
    • Kichenassamy, S.1    Littman, W.2
  • 8
    • 0000269715 scopus 로고
    • Blow-up surfaces for nonlinear wave equations. II
    • 11
    • Kichenassamy S., Littman W.: Blow-up surfaces for nonlinear wave equations. II. Comm. Partial Differe. Eq. 18(11), 1869-1899 (1993)
    • (1993) Comm. Partial Differe. Eq. , vol.18 , pp. 1869-1899
    • Kichenassamy, S.1    Littman, W.2
  • 9
    • 84968476629 scopus 로고
    • Instability and nonexistence of global solutions to nonlinear wave equations of the form Pu ⊂ tt}=-Au+ \cal F}(u)
    • Levine H.A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form Pu ⊂ tt=-Au F}u). Trans. Amer.Math. Soc. 192, 1-21 (1974)
    • (1974) Trans. Amer. Math. Soc. , vol.192 , pp. 1-21
    • Levine, H.A.1
  • 10
    • 0034164847 scopus 로고    scopus 로고
    • A Liouville theorem for the critical generalized Korteweg-de Vries equation
    • 4
    • Martel Y., Merle F.: A Liouville theorem for the critical generalized Korteweg-de Vries equation. J. Math. Pures Appl. (9). 79(4), 339-425 (2000)
    • (2000) J. Math. Pures Appl. (9). , vol.79 , pp. 339-425
    • Martel, Y.1    Merle, F.2
  • 11
    • 0036000529 scopus 로고    scopus 로고
    • Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation
    • 1
    • Martel Y., Merle F.: Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation. Ann. of Math. (2). 155(1), 235-280 (2002)
    • (2002) Ann. of Math. (2). , vol.155 , pp. 235-280
    • Martel, Y.1    Merle, F.2
  • 12
    • 2942586742 scopus 로고    scopus 로고
    • 2 critical nonlinear Schrödinger equation
    • 3
    • 2 critical nonlinear Schrödinger equation. Invent. Math. 156(3), 565-672 (2004)
    • (2004) Invent. Math. , vol.156 , pp. 565-672
    • Merle, F.1    Raphael, P.2
  • 13
    • 20444437961 scopus 로고    scopus 로고
    • The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation
    • (1
    • Merle F., Raphael P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Annals of Math (2). 161((1), 157-222 (2005)
    • (2005) Annals of Math (2). , vol.161 , pp. 157-222
    • Merle, F.1    Raphael, P.2
  • 14
    • 0032338170 scopus 로고    scopus 로고
    • Optimal estimates for blowup rate and behavior for nonlinear heat equations
    • 2
    • Merle F., Zaag H.: Optimal estimates for blowup rate and behavior for nonlinear heat equations. Comm. Pure Appl. Math. 51(2), 139-196 (1998)
    • (1998) Comm. Pure Appl. Math. , vol.51 , pp. 139-196
    • Merle, F.1    Zaag, H.2
  • 15
    • 0034407299 scopus 로고    scopus 로고
    • A Liouville theorem for vector-valued nonlinear heat equations and applications
    • 1
    • Merle F., Zaag H.: A Liouville theorem for vector-valued nonlinear heat equations and applications. Math. Ann. 316(1), 103-137 (2000)
    • (2000) Math. Ann. , vol.316 , pp. 103-137
    • Merle, F.1    Zaag, H.2
  • 16
    • 0141430071 scopus 로고    scopus 로고
    • Determination of the blow-up rate for the semilinear wave equation
    • Merle F., Zaag H.: Determination of the blow-up rate for the semilinear wave equation. Amer. J. Math. 125, 1147-1164 (2003)
    • (2003) Amer. J. Math. , vol.125 , pp. 1147-1164
    • Merle, F.1    Zaag, H.2
  • 17
    • 20444479518 scopus 로고    scopus 로고
    • Blow-up rate near the blow-up surface for semilinear wave equations
    • Merle F., Zaag H.: Blow-up rate near the blow-up surface for semilinear wave equations. Internat. Math. Res. Notices. 19, 1127-1156 (2005)
    • (2005) Internat. Math. Res. Notices. , vol.19 , pp. 1127-1156
    • Merle, F.1    Zaag, H.2
  • 18
    • 15244344675 scopus 로고    scopus 로고
    • Determination of the blow-up rate for a critical semilinear wave equation
    • 2
    • Merle F., Zaag H.: Determination of the blow-up rate for a critical semilinear wave equation. Math. Annalen. 331(2), 395-416 (2005)
    • (2005) Math. Annalen. , vol.331 , pp. 395-416
    • Merle, F.1    Zaag, H.2
  • 19
    • 35448974487 scopus 로고    scopus 로고
    • Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension
    • 1
    • Merle F., Zaag H.: Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension. J. Funct. Anal. 253(1), 43-121 (2007)
    • (2007) J. Funct. Anal. , vol.253 , pp. 43-121
    • Merle, F.1    Zaag, H.2
  • 21
    • 46749102946 scopus 로고    scopus 로고
    • 1, α regularity of the blow-up curve at non-characteristic points for the one dimensional semilinear wave equation
    • (to appear)
    • 1, α regularity of the blow-up curve at non-characteristic points for the one dimensional semilinear wave equation. Comm. Partial Diff. Eq. (2008) (to appear)
    • (2008) Comm. Partial Diff. Eq.
    • Nouaili, N.1
  • 22
    • 0346724399 scopus 로고    scopus 로고
    • On the regularity of the blow-up set for semilinear heat equations
    • 5
    • Zaag H.: On the regularity of the blow-up set for semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire. 19(5), 505-542 (2002)
    • (2002) Ann. Inst. H. Poincaré Anal. Non Linéaire. , vol.19 , pp. 505-542
    • Zaag, H.1
  • 23
    • 20544465671 scopus 로고    scopus 로고
    • One dimensional behavior of singular N dimensional solutions of semilinear heat equations
    • 3
    • Zaag H.: One dimensional behavior of singular N dimensional solutions of semilinear heat equations. Comm. Math. Phys. 225(3), 523-549 (2002)
    • (2002) Comm. Math. Phys. , vol.225 , pp. 523-549
    • Zaag, H.1
  • 24
    • 46749092604 scopus 로고    scopus 로고
    • Regularity of the blow-up set and singular behavior for semilinear heat equations
    • (Bethlehem, 2000), River Edge, NJ: World Sci. Publishing
    • Zaag, H.: Regularity of the blow-up set and singular behavior for semilinear heat equations. In: Mathematics & mathematics education (Bethlehem, 2000), River Edge, NJ: World Sci. Publishing, (2002) pp 337-347
    • (2002) Mathematics & Mathematics Education , pp. 337-347
    • Zaag, H.1
  • 25
    • 33746094327 scopus 로고    scopus 로고
    • Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation
    • 3
    • Zaag H.: Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation. Duke Math. J. 133(3), 499-525 (2006)
    • (2006) Duke Math. J. , vol.133 , pp. 499-525
    • Zaag, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.